
UNS3D USER’S MANUAL

Release 6.2.2

Aerospace Numerical Simulation Laboratory

Department of Aerospace Engineering

Texas A&M University

February 17, 2024

Contents

1 Introduction 1

1.1 The uns3d code . 1

1.2 bfg . 1

1.3 What is new in version 6.0 . 2

2 Flow Model 3

2.1 Physical Model . 3

2.1.1 Dimensionless Variables . 3

2.2 Full-Order Model . 4

3 Numerical Method 5

3.1 Spatial Discretization . 5

3.1.1 Integral Formulation . 5

3.1.2 Fluxes Computation . 5

3.1.3 Gradient Computation . 6

3.2 Temporal Discretization . 6

4 Software Installation 7

4.1 Preliminary Setup . 7

4.2 uns3d Installation . 8

5 Starting, Executing, and Stopping uns3d 9

5.1 Running uns3d . 9

Typical Simulation . 10

5.2 Stopping uns3d . 11

6 Input and Output Files for uns3d 13

6.1 uns3d Input File . 13

6.1.1 Main input file . 13

&cardf . 14

&cardg . 16

&cardh . 17

&cardi . 18

&cardk . 19

&card0 . 20

UNS3D User’s Manual Texas A&M

ii CONTENTS

&card1 . 22

&card2 . 24

&card2a . 27

&card3 . 28

&card4 . 29

&card5 . 31

&card6 . 32

&card7 . 33

&card8 . 34

&card9 . 35

&card10 . 37

&cardprecon . 38

&cardforced . 39

&cardrom . 41

&vortex . 42

&patchbox . 43

&shocktube . 44

6.1.2 vol.mesh File . 45

6.1.3 c2n.def File . 46

6.1.4 *.mapbc File . 46

6.1.5 typlim ids.dat File . 47

6.1.6 Modal Definition File . 47

6.1.7 LinearCascadeFV.def File . 48

6.1.8 SurfaceSetInt.def File . 51

6.2 uns3d Output Files . 51

7 uns3d Graphical User Interface 55

7.1 Introduction . 55

7.2 TclTk . 55

7.3 Installation . 56

7.4 Using the GUI . 57

7.4.1 Creating or Loading a Project . 57

Creating a Project . 57

Loading a Project . 58

7.4.2 The Main Window . 59

Creating Input . 59

Selecting Another Project . 61

Create Multi-Run Jobs . 62

Running the Code . 62

A Boundary Condition Descriptions 65

A.1 Symmetry Boundary Conditions . 65

A.1.1 isymbc = 0: “Pseudo-Ghost Cell” Implementation 65

A.1.2 isymbc = 1: “Inviscid Wall” Implementation 66

UNS3D User’s Manual Release 6.2.2: February 17, 2024

CONTENTS iii

A.2 Farfield Boundary Conditions . 67

A.2.1 ifarbc = 1: Extrapolation . 67

A.2.2 ifarbc = 2: Riemann Invariant . 67

B Grid Generation Utilities 69

B.1 Grid Preprocessing (prep) . 69

B.1.1 Installation . 69

B.1.2 Usage . 70

B.2 Domain Decomposition (splitmesh) . 71

B.2.1 Installation . 72

B.2.2 Input and Output Files . 72

B.2.3 Usage . 73

B.2.4 usr def srt Subroutine . 74

B.2.5 Compatibility . 75

B.3 File Format . 75

B.3.1 UGRID Format . 75

B.3.2 loc2glob.dat Format . 76

B.4 splitout and combineout . 77

B.4.1 splitout . 77

B.4.2 combineout . 78

UNS3D User’s Manual Texas A&M

iv CONTENTS

UNS3D User’s Manual Release 6.2.2: February 17, 2024

List of Tables

2.1 Dimensionless variables denoted with ˜ and derived reference values based on Tref . 4

A.1 Farfield boundary implementation options. 67

B.1 List of boundary conditions. 70

UNS3D User’s Manual Texas A&M

vi LIST OF TABLES

UNS3D User’s Manual Release 6.2.2: February 17, 2024

List of Figures

6.1 Inlet velocity and its angles. 30

6.2 Typical H-type linear cascade geometry. 50

7.1 Splash screen for GUI. 57

7.2 “File manager” screen for GUI. 57

7.3 “Create a New Project” screen for GUI. 58

7.4 “Load an Existing Project” screen for GUI. 58

7.5 The main screen of the GUI. 59

7.6 An example overview tab for the GUI. 60

7.7 “Generate Flow Conditions” utility for the GUI. 61

7.8 The project tree view for the GUI on the main screen. 62

7.9 The multiple run tree view for the GUI on the main screen. 62

7.10 The run tab with code output from the GUI. 63

A.1 Illustration of a symmetry boundary face, “face n”. 66

UNS3D User’s Manual Texas A&M

viii LIST OF FIGURES

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Nomenclature

ρ – density

u – velocity in x-direction

v – velocity in y-direction

w – velocity in z-direction

p – pressure (absolute)

T – temperature

e – thermodynamic energy (equal to cvT)

h – thermodynamic enthalpy (equal to cpT)

γ – ratio of specific heats (cp/cv), taken as 1.4 unless otherwise specified

cp – specific heat under constant pressure conditions

cv – specific heat under constant volume conditions

Vm(t) – material volume, defined as the volume which encompasses a set portion of material

(moves with velocity ~u)

Vg(t) – predefined “grid” volume (moves with velocity ~ug)

Vc – volume which coincides with both Vm and Vg at time t

~ur – relative velocity between the two volumes (~u − ~ug) item[q] – state vector, function of time

and space: q = {ρ, ρu, ρv, ρw, ρe}T

qi – average value of state vector over Ωi, function of time

Ωi – refers to a single cell, possibly function of time

R – flux function

~Sij – directional area of face ij

V̇ij – volume swept by a face per unit time

UNS3D User’s Manual Texas A&M

Chapter 1

Introduction

This manual describes how to install and run the uns3d software package. This software package

consists of the following codes: (i) uns3d , the main code that generates both the full-order and

reduced-order model results, (ii) bfg , a code that generates the basis functions, (iii) grassman ,

a code that generates the basis functions for off-reference conditions, (iv) prep , a code that is

used in grid generation, (v) splitmesh , a code that splits the mesh for parallel runs, and (vi)

a graphic user interface for uns3d . A prelude of the uns3d and bfg codes is included herein,

while the other software is described later in the manual.

1.1 The uns3d code

The uns3d name stands for Unsteady-Unstructured Three-Dimensional 3D Proper Orthogonal

Decomposition.

The uns3d code models steady and unsteady flows using the Reynolds-averaged Navier-

Stokes model. The uns3d software generates both full-order and reduced-order model results.

The reduced-order model results are generated using the proper orthogonal decomposition (POD)

method with static and dynamic basis functions.

The POD dynamic basis functions approach was developed during the GUIde4 project. The

POD dynamic basis functions allow the POD method to be applied to flows with moving bound-

aries, such as the moving blades in a cascade. Prior to this work, the POD method could not be

applied to moving surfaces, and therefore, could not be applied to aeroelastic applications where

displacements were significant.

The uns3d code is written in Fortran95 and uses the MPI library for parallelization. The code

was compiled and tested with several Fortran compilers: Absoft, Intel and Gfortran. The code was

tested on Unix and Linux operating systems.

1.2 bfg

The bfg name stands for Basis Functions Generator.

The bfg software generates the POD static and dynamic basis functions.

UNS3D User’s Manual Texas A&M

2 Introduction

The bfg software is written in Fortran95. The code was compiled and tested with several

Fortran compilers: Absoft, Intel and Gfortran. The code was tested on Unix and Linux operating

systems.

1.3 What is new in version 6.0

Version 6.0 added the Spalart-Allmaras turbulence model [1, 12]. This turbulence model is now

the default turbulence model. Card4, on page 29, includes two new variable: neqt and nustart.

Version 6.0 provides an estimate of the run time. This information is saved in the file

estimated_run_time.dat, described on page 52.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 2

Flow Model

In this chapter, the physics and discretization of the flow model are discussed, and the reduced-

order model is derived.

2.1 Physical Model

The fluid flow is governed by the conservation of mass, momentum, and energy. For three-

dimensional viscous flow, in the absence of source terms, these axioms can be expressed in integral

form as

∂

∂t

∫

Ω(t)

UdΩ +

∮

∂Ω(t)

(Fc − Fv)n dS = 0, (2.1)

where

U ≡

ρ
ρv
ρE

, Fc ≡

ρ (v − vg)
T

ρv (v − vg)
T + pI

ρE (v − vg)
T + pvT

 , Fv ≡

0T

T

(Tv + k∇Θ)T

 ,

v ≡ ui+ vj+ wk, T ≡ 2µD− 2

3
µ (∇ · v) I,

and vg is the velocity of the boundary of Ω, which satisfies the geometric conservation law [2, 13,

14]:

vT
g n =

∆Ω

S∆t
.

The turbulence is modeled using either a one-equation model, the Spalart-Allmaras model [12],

or the two-equation eddy viscosity Shear Stress Transport model proposed by Menter [8]. These

models can be cast in a form similar to (2.1).

2.1.1 Dimensionless Variables

To reduce the numerical errors, the flow variables are used in dimensionless form, as shown in

Table 2.1

UNS3D User’s Manual Texas A&M

4 Flow Model

Table 2.1: Dimensionless variables denoted with˜ and derived reference values based on Tref .

Note that pref is also a reference value but it is not used as such, see subroutine nondimension.

Furthermore, for dimensionless viscosity, the code uses the array fmu which contains µ̃/Re as

opposed to just µ̃. Note that Re is the Reynolds number per unit length.

x̃ = x/L ũ = u/c∞ t̃ = tc∞/L ρ̃ = ρ/ρ∞ p̃ = p/(ρ∞c2
∞
)

Ẽ = E/c2
∞

H̃ = H/c2
∞

µ̃ = µ/µ∞ µ̃t = µt/µ∞ ẽ = e/c2
∞

s̃ = s/s∞ s∞ = p∞/ργ
∞

c∞ =
√

γRTref R̃ = RTref/V
2
ref T̃ = T/Tref

Vref =
√

γRTref c∞ = Vref

Note that the primitive state variables are stored in the array q. This array has dimensions

nnode and 6, that is, q(nnode,6). The sixth component of the array is not a component of the

state variable, but stores the dimensionless speed of sound squared

c̃2 =
c2

Vref
=

γRT

γRTref
= T̃ .

Therefore, the sixth component of the array q is also equal to the dimensionless temperature, T̃ .

2.2 Full-Order Model

Letting F ≡ (Fc − Fv)n, (2.1) was discretized using finite volumes [3]:

∆(ΩkUk)

∆t
= −

faces(k)
∑

ℓ=1

FkℓSℓ ≡ −Rk. (2.2)

Equation (2.2) was solved using a Runge–Kutta method with a Roe–Riemann flux-difference split-

ting scheme.

Mesh deformation was achieved through radial basis function interpolation within the updated

boundaries [4].

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 3

Numerical Method

The numerical method used in the uns3d code to solve the Reynolds-averaged Navier-Stokes

equations is second-order accurate in time and space. A first-order spatial accurate method is also

available for starting up the simulation.

3.1 Spatial Discretization

3.1.1 Integral Formulation

The Navier-Stokes equations are discretized using the finite volume method. Consequently, the

governing equations are written in integral form. A generic scalar conservation equation written in

the differential form as
Du

Dt
+ F (u)i,i = 0 (3.1)

where (·), i ≡ ∂(·)/∂xi, becomes in integral form

D

Dt

∫

Ω

udΩ+

∫

∂Ω

F (u)inidΩ = 0. (3.2)

The weak form of the generic scalar conservation equation is

D

Dt

∫

Ω

φudΩ−
∫

Ω

φ,iF (u)idΩ =

∫

Ω

φF (u)inidΩ. (3.3)

Eq. (3.3) reduces to Eq. (3.2) if the test function is constant, i.e., φ,i = 0. The integral form can be

viewed as a weak formulation of the Finite Element Method with a constant test function.

3.1.2 Fluxes Computation

Several options are available in uns3d for the fluxes computation. The Godunov method, which

is an upwind method for hyperbolic equations, is employed herein to resolve the inviscid flux. One

options is to solve the Riemann problem using the Godunov method with the Roe’s approximate

Riemann solver [10, 11].

UNS3D User’s Manual Texas A&M

6 Numerical Method

The inviscid flux from Roe’s approximate Riemann solver [10, 11] is defined in terms of the

two states across a median-dual cell face, uL and uR,

fc =
1

2

[

Fc(uL) + Fc(uR)− |Ã|∆uR,L

]

(3.4)

where |Ã| is the flux Jacobian with respect to the conservative variables and ∆(·) = (·)R − (·)L is

the difference between the right and left states. The tilde symbol in |Ã| indicates that the Jacobian

is evaluated using averaged state variables that are constant and therefore the solution is based on

a linearized equation.

Roe’s density weighted averages are defined as [10]

ρ̃ =
√
ρRρL

ũ = (uL
√
ρL + uR

√
ρR)/(

√
ρL +

√
ρR)

ṽ = (vL
√
ρL + vR

√
ρR)/(

√
ρL +

√
ρR)

w̃ = (wL
√
ρL + wR

√
ρR)/(

√
ρL +

√
ρR)

H̃ = (HL
√
ρL +HR

√
ρR)/(

√
ρL +

√
ρR)

Ṽ = ũnx + ũny + ũnz − Vg.

(3.5)

Roe’s approximated Riemann solver admits an expansion shock because the vanishing viscos-

ity does not provide enough diffusion. The instability of the Roe Riemann solver in particular

cases is well documented [5, 7, 16]. Herein we used Harten’s entropy fix [6]. This fix modifies

the eigenvalue such that it never reaches 0. Whereas the numerical dissipation provided by Roe’s

method is proportional to the magnitude of eigenvalue, the Harten’s fix adds non-vanishing dis-

sipation to remove the expansion shock and the instability problem at the expense of being more

dissipative.

In addition to the Roe with Harten entropy fix, uns3d offers the following alternative options

for calculating the fluxes: RoeM, AUSM+, AUSMPW+, HLLC, and Modified Steger-Warming.

3.1.3 Gradient Computation

The accuracy of the gradient computation is important for correctly estimating the viscous fluxes,

which are defined in terms of the gradients of the velocity components and the temperature. The

diffusion terms in the k − ω turbulence model also require the gradient of the k and ω field. The

uns3d offers four options for calculating the gradients: (1) the Green-Gauss method, (2) the least

squares method, (3) the least squares with QR, and (4) the WENO method.

3.2 Temporal Discretization

There are many possible implementations of integration in time, such as explicit or implicit and

single time step or dual time step. uns3d can use one of four options: (1) explicit single time

stepping, (2) implicit single time stepping, (3) explicit dual time stepping, and (4) implicit dual

time stepping.

Explicit and implicit time stepping can be run using either a time-accurate approach or a steady-

state approximation. Dual time stepping by nature is time-accurate, though it uses some of the

acceleration techniques available to steady-state flows.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 4

Software Installation

This chapter explains how to install the uns3d software on your Linux or Unix computer. The

first section presents how to define some useful environment variables and how to create folders

for source and data files. The second section presents the installation of the uns3d code, the flow

solver.

4.1 Preliminary Setup

It is convenient to define first the folder where software is being installed. For the C-shell add the

following line to the .cshrc file:

setenv UNS3DHOME /wherever_you_want_it_to_be

For the Bourne, Bash or Korn shell, add the following line to the .bashrc file:

export UNS3DHOME=/wherever_you_want_it_to_be

Create two folders in $UNS3DHOME, one for source files and one for the data.

cd $UNS3DHOME

mkdir src

mkdir dat

In the src folder, create a folder for the flow solver :

cd $UNS3DHOME/src

mkdir 5.3.1, this folder is for the version 5.3.1 of the flow solver

UNS3D User’s Manual Texas A&M

8 Software Installation

4.2 uns3d Installation

To install the flow solver, follow these steps:

1. Copy the distribution file uns3d .tgz from where you downloaded to

$UNS3DHOME/5.3.1 and untar it:

cp uns3d .tgz $UNS3DHOME/5.3.1

cd $UNS3DHOME/5.3.1

tar xvfz uns3d .tgz

2. Edit the makefile to match the FORTRAN compiler that you have available and then make

the makefile to generate the executable uns3dpod:

make

3. For convenience, you might want to add the executable uns3d to a folder that is in the

$PATH, for example /usr/local/bin. To do this, copy the executable uns3d :

sudo cp uns3d /usr/local/bin

The sudo command requires the superuser password for your computer.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 5

Starting, Executing, and Stopping uns3d

This chapter describes how to run uns3d using terminal line commands.

5.1 Running uns3d

To generate flow snapshots using uns3d , switch to the directory from which you want to run. For

example, this can be accomplished with the Unix command:

cd $UNS3DHOME/dat/example/FOM.

In this example it is assumed the following folder structure:

example/basis_da_db_6

example/FOM/out

example/FOM/plt

example/FOM/txt

example/mesh

Once in the appropriate directory, the user has two choices for running uns3d : (1) interac-

tively or (2) in batch. Before running the uns3d code, especially for large cases, it is prudent to

check your stack size by typing:

ulimit -s

If the stack size is too small, you might get the dreaded Segmentation fault error message.

Therefore, you might want to increase it before running uns3d . This can be done using:

ulimit -s 65000

which sets the stack size to 65,000 kbytes.

To run uns3d interactively use the following command statement:

uns3d input

The above command statement assumes that theuns3d executable file is located in the $PATH,

as described in Section 4.2. The name of the input file is given by the character argument that

follows the name of the executable. In the case of the example, the input file is called input. The

input file is discussed in Section 6.1.

UNS3D User’s Manual Texas A&M

10 Starting, Executing, and Stopping uns3d

To run the uns3d code in parallel, use the following command:

mpirun -np 240 uns3d input

when the code was run on 240 processors.

A run file can be used when running uns3d in batch. The run file should contain the same

commands used to run interactively. An example of this could be

uns3d input0

uns3d input1

uns3d input2

In this case uns3d will be run three consecutive times to produce two intermediate solution

files (see next section for details). The run file is then submitted to the queue for execution using

the appropriate system commands.1 The mesh files must be either physically located in or linked

to the execution directory for both interactive and batch running options.

uns3d writes five main output files during the course of the simulation. The first three files are

used to backup the flow fields, turbulence fields, and unsteady flow fields, respectively. These three

files can be used to restart the flow solver. A fourth file is used to output the convergence history

and the integrated parameters. This file has the same format as the information that is dumped to

the screen while uns3d is running. The fifth file is used for solution visualization, and is written

in either Visual3 or Tecplot format. The names of these five output files can be specified by the

user in the input file.

In addition to the five main output files, uns3d writes three groups of five files that contain

different forms of the variable histories for density, x-component of velocity, y-component of

velocity, z-component of velocity, and pressure, respectively. The three different types of variable

histories are the average residual history, the maximum residual history, and the variable error.

Also written are the iteration (time) histories for the integrated forces in the x-, y-, and z-directions,

maximum Mach number, and the ratio of input/output mass flow rates.

Typical Simulation

Rather than specifying too many iterations in one run, it is recommended to use multiple runs with

a “reasonable” number of iterations. The value of a “reasonable” number of iterations depends on

how many iterations your computer can simulate per hour, and how many hours you would like to

wait until an intermediate result is generated. These intermediate results will be used as start-up

results for subsequent runs.

To use intermediate results for an inviscid case, the file names fileinq, fileoutq, and

ireadq in the input file must be modified. Detailed information about the input and output files

is given in Chapter 6. The variable ireadq should be set to 0 for the very first run. Afterwards,

ireadq must be set to 1. When ireadq = 1, the variable fileinq should be specified. When

running a turbulent flow case, the variables fileinqt, fileoutqt, and ireadqt must also

be modified in a similar fashion to fileinq, fileoutq, and ireadq. By chaining input and

output files between the consecutive runs, an uninterrupted single run can be obtained.

1Other commands may be needed in the run file for batch submission. Read your local batch submission instruc-

tions for details

UNS3D User’s Manual Release 6.2.2: February 17, 2024

5.2 Stopping uns3d 11

5.2 Stopping uns3d

uns3d can be stopped by adding a file with the name ’stop.dat’ in the folder where the code is run

from. Alternative names for this file are ’Stop.dat’ and ’STOP.dat’.

The only information in the ’stop.dat’ file is an integer. If this integer is 0, the code writes

the appropriate restart files and Tecplot files, and terminates. If the integer is 1, the code writes

the same information before terminating, however, the filenames have the ’.STOP’ appended. If

the integer of the ’stop.dat’ file is different from 0 and 1, the code terminates without writing any

restart information.

Make sure the ’stop.dat’ file is removed before attempting a new run.

UNS3D User’s Manual Texas A&M

12 Starting, Executing, and Stopping uns3d

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 6

Input and Output Files for uns3d

6.1 uns3d Input File

6.1.1 Main input file

The main input file for uns3d is written using the Fortran namelist format. Multiple input blocks

are used to specify the input parameters. The input file specifies the names of the restart and output

files, code control parameters, and the boundary conditions. The input parameters are presented

using the same groupings as the actual input file. The first column gives the name of the variable.

The second gives the variable type: integer (I), real (R), logical (L), or character string (C). The

final column gives the variable description, and in some cases a default value.

UNS3D User’s Manual Texas A&M

14 Input and Output Files for uns3d

&cardf

&cardf – Output File Names

title C Case description

case_name C Specifies the base filename for the y+ output files

rsdfile C Name of the file that stores the convergence history and the

integrated parameters, such as mass flow rate, force com-

ponents, efficiency, and the ratio of outlet static (or total)

pressure to a reference pressure

relative_v L Flag that specifies whether the output velocity is in a relative

or absolute frame of reference

dump_v3 L Flag that outputs a V3 data file – NOT USED

v3data C Name of the output file that stores the flow field and turbu-

lence variables for the V3 visualization package

dump_tecplot L Flag that specifies if a TECPLOT format output file is writ-

ten

tecplot_name C Name of the TECPLOT format output file

[DEFAULT=tecplot.dat]

dump_yplus L Flag that controls the output of y+ values on walls

[DEFAULT=.FALSE.]

bcplot L Flag that controls the output of the boundary condition val-

ues [DEFAULT=.FALSE.]. If .TRUE., the file is saved

as plt/boundary_face_values.plt.

dump_grads L Flag that controls the output of gradient values

[DEFAULT=.FALSE.]

grad_name C Name of the output gradient file

[DEFAULT=plt/gradients.plt]

dump_resid L Flag that controls output of flow and turbu-

lence equation residual plot files. Files are

written to<case name> q residuals.plt

and <case name> qt residuals.plt [DE-

FAULT=.FALSE.]

mapbc L Flag that indicates whether or not a .mapbc boundary in-

dex file is present and should be read. This flag dictates

how the boundary conditions are specified – see &card4 and

&card5 for more details [DEFAULT = .FALSE.]. Note:

the grid meshes are different between the cases that run with

mapbc .TRUE. and .FALSE. For the .FALSE. option,

the mesh file includes the idbcs, that is, the negative -1 to

-100+ integers. For the .TRUE. option, the mesh file in-

cludes the number of the boundary type, integers from 1 to

the max number of boundaries.

mapbcfile C Name of the .mapbc file (described in Sec. 6.1.4). File is

only read if mapbc = .TRUE.[DEFAULT = vol.mapbc]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 15

ref_io L Flag that if set .TRUE. then ref_inlet and

ref_outlet are specified in the input file. If .FALSE.

then the first inlet boundary is the inlet reference boundary

and the first outlet boundary is the outlet reference bound-

ary [DEFAULT=.FALSE.]

ref_inlet I Index specifying which boundary condition of the

*.mapbc file is the main inlet boundary of the computa-

tional domain. The flow conditions of the main inlet bound-

ary are then used when computing reference values for the

simulation. Note that if ref_inlet=0 then the first in-

let boundary listed in *.mapbc becomes the main inlet

boundary, so the order of inlet boundaries in *.mapbc is

important. [DEFAULT=0]

ref_outlet I Index specifying which boundary condition of the

*.mapbc file is the main outlet boundary of the com-

putational domain. The flow conditions of the main out-

let boundary are then used when computing reference val-

ues for the simulation. Note that if ref_outlet=0 then

the first outlet boundary listed in *.mapbc becomes the

main outlet boundary, so the order of outlet boundaries in

*.mapbc is important. [DEFAULT=0]

bingrid L flag for mesh and c2n files; if .TRUE., both files are binary;

if .FALSE., both files are ascii [DEFAULT=.FALSE.]

ioflag I flag for state variable files [DEFAULT=0]

= 0 ascii in / ascii out

= 1 ascii in / binary out

= 2 binary in / binary out

= 3 binary in / ascii out

init_shocktube L Flag to generate an initial flow field for a shock tube [DE-

FAULT=.FALSE.]

multilim L Flag to use multiple slope limiters [DEFAULT=.FALSE.]

UNS3D User’s Manual Texas A&M

16 Input and Output Files for uns3d

&cardg

&cardg – Grid File Name

gridfile C Name of the pre-processed grid data. This file is generated

by the grid pre-processing code (PREP)

c2nfile C Name of the cell-to-node grid data. This file is generated by

the grid pre-processing code (PREP)

l2gfile C Name of file that gives the relationship between the number

of a node on its local processor and the number of the same

node on entire (global) grid. [DEFAULT = loc2glob.dat]

XleXteRte C Name of the file that is used to define the initial flow field.

For an annular cascade of an axial compressor (igeom=0)

the file defines the velocities at every node. For an annular

cascade of a radial compressor (igeom=-1) the file specifies

the impeller face location (xle), the impeller backplate (xte),

and the outer radius of the impeller (rte).

ijkfile C

surfint_file C

multilimfile C Name of .dat file (described in Sec. 6.1.5). File is only

read if multilim = .TRUE.[DEFAULT = typlim ids.dat]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 17

&cardh

&cardh – Flow Field Restart Files

fileinq C Name of the input file that contains the state variables

{ρ, u, v, w, p} at time tlast of the previous run; this file

should have been written in the previous run; this file is

read at the beginning of the current run unless ireadq =

0.

fileoutq C Name of the output file that contains the state variables

{ρ, u, v, w, p} at time tlast, the last time of current run; this

file is written at the end of the current run.

fileinq12 C Name of input file that stores the state variable

{ρ, u, v, w, p} at times tlast−1 and tlast−2 of the previous

run; this file should have been written in the previous run;

this file is read at the beginning of the current run unless

readq12 = F.

fileoutq12 C Name of output file that is written at the end of the current

run, file that stores the state variable {ρ, u, v, w, p} at times

tlast−1 and tlast−2 of the current run; written at the end of

the run for unsteady problem.

UNS3D User’s Manual Texas A&M

18 Input and Output Files for uns3d

&cardi

&cardi – Turbulent Field Restart Files

fileinqt C Name of input file that contains the turbulence variables at

time tlast of the previous run; this file should have been writ-

ten in the previous run; this file is read at the beginning of

the current run unless ireadqt = 0

fileoutqt C Name of the output file that contains the turbulence vari-

ables at time tlast, the last time of current run; this file is

written at the end of the current run.

fileinqt12 C Name of the input file that contains turbulent variables at

times tlast−1 and tlast−2 of the previous run; this file should

have been written in the previous run; this file is read at the

beginning of the current run unless readqt12 = F.

fileoutqt12 C Name of the output file that contains turbulent variables at

times tlast−1 and tlast−2 of the current run; written at the end

of the run for unsteady problem.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 19

&cardk

&cardk – Multi-Block Mesh Restart Files

filembin C Name of the multi-block mesh position input restart file

filembout C Name of the multi-block mesh position output restart file

UNS3D User’s Manual Texas A&M

20 Input and Output Files for uns3d

&card0

&card0 – Boundary Condition Type Controls

noblade I number of compressor/turbine blades, used to define periodicity; For

noblade > 0, igeom must be 0 or -1. If noblade = 0, igeom

must be 1. For annular cascades, noblade = 0 is used to initialize the

solution and then we switch to the correct noblade.

= 1 360 deg

= 2 180 deg

.

= n 360/n deg

= 0 linear cascade; igeom must be 1

igeom I Flag indicating the geometry type:

= -1 Annular cascade row: centrifugal

= 0 Annular cascade row: axial

= 1 Linear cascade

inbc(i) I Inlet boundary condition flag array whose array index corresponds to

the boundary face index found in *.mapbc file. 1 ≤ i ≤ itmax. Omit

the array index if mapbc = .FALSE.When multiple inlet boundary

conditions are specified, the first inlet boundary condition is the main

one. The main inlet boundary condition is used for nondimesionaliza-

tion.

= -2 Subsonic inlet boundary conditions that prevent

reversed flow at inlet; uses stagnation pressure,

two velocity angles, and Riemann 1 from up-

stream, and Riemann 2 from the interior

= -1

= 0 Uniform inlet boundary conditions [DEFAULT]

= 1

= 2

= 3

= 4 Entropy, stagnation enthalpy

= 5 Supersonic flow; uniform inlet velocity, pressure

and temperature

= 6 See Blazek Section 8.4

= 7 Supersonic flow; uniform inlet velocity, pressure

and temperature

= 8 Test case for supersonic free vortex flow

ioutbc(i) I Outlet boundary condition flag array whose array index corresponds

to the boundary face index found in *.mapbc file. Omit the array

index if mapbc = .FALSE.When multiple outlet boundary conditions

are specified, the first outlet boundary condition is the main one.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 21

= 0 “leak outlet” condition (secondary back pressure

outlet)

= 1 Checks if there is back-flow, and if there is,

switches boundary condition pressure from out-

side the domain to inside the domain

= 2 Impose static back pressure unless supersonic

[DEFAULT]

= 6 Extrapolation

ipex(i) I Outlet static pressure radial variation flag array whose array index cor-

responds to the boundary face index found in *.mapbc file. Omit the

array index if mapbc = .FALSE.

= 0 Specify uniform pressure [DEFAULT]

= 1 Enforce radial equilibrium with pressure defined

at “hub”

= 2 Enforce radial equilibrium with pressure defined

at “tip”

isymbc I Symmetry boundary condition flag. Refer to Sec. A.1 for detailed op-

tion descriptions of each option

= 0 “Pseudo-ghost cell”

= 1 “Inviscid wall” [DEFAULT]

ifarbc I Far-field boundary condition flag. Refer to Sec. A.2 for detailed de-

scriptions of each option.

= 0 Slip-wall [DEFAULT]

= 1 Extrapolate

= 2 Riemann Invariant

ispet I Thermal boundary condition type

= 0 Adiabatic wall [DEFAULT]

= 1 Isothermal wall. Wall temperature given in

&card5

leak_outlet L Leak outlet flag

=.TRUE. Leak outlet exists

=.FALSE. No leak outlet [DEFAULT]

iwall I Type of wall boundary condition for inviscid flow

= 1 Ghost cell and interior cell impose no-penetration

= 2 No longer used

= 3 Ghost cell imposes no-penetration [DEFAULT]

= 4 No longer used

deltafhat R Entropy correction [DEFAULT=0.001] (see AERO615 class notes,

p.20:7)

UNS3D User’s Manual Texas A&M

22 Input and Output Files for uns3d

&card1

&card1 – Code Controls

ireadq I Flag that tells whether the state variables {ρ, u, v, w, p} are

either read from the file fileinq (specified in &cardh)

or initiated using a uniform field

= 0 Start from uniform field [DEFAULT]

= 1 Read flow field from fileinq

readq12 L Flag that tells whether to read in and use the flow fields q1

and q2 at the previous two time steps, which are stored in

file fileinq12; [DEFAULT=.FALSE.]

ireadqt I Flag that tells whether the turbulence variables are either

read from the file fileinqt (specified in &cardi) or ini-

tiated using a uniform turbulence field.

= 0 Start from uniform field [DEFAULT]

= 1 Read field from fileinqt

readqt12 L Flag that tells whether to read in and use the turbulence vari-

ables qt1 and qt2 at the previous two time steps, which

are stored in file fileinqt12; [DEFAULT=.FALSE.]

npseudotimesteps I Number of pseudo-time marching steps. For steady flows

this is the number of iterations. [DEFAULT=20]

mtime I Number of real time marching steps, [DEFAULT=1].

= 1 Steady flow or unsteady single time-stepping

> 1 Dual time-stepping

iramp I Number of pseudo-time steps over which the boundary con-

ditions are ramped up. Use 1 to apply boundary condi-

tions suddenly, if there is no convergence problem; [DE-

FAULT=1]

iramp0 I Number of pseudo-time steps after which the ramping up

of the boundary conditions begins (i.e., in the first iramp0

pseudo-time steps the boundary conditions are not updated).

Use 0 if there is no convergence problem; [DEFAULT=0]

Example: iramp = 10, iramp0 = 5 → for the first 5 pseudo-

time steps, the boundary conditions are not changed (there

are exceptions, such as wall boundary conditions); then, for

the next 10 pseudo-time steps, the boundary conditions are

ramped up.

iramp_leak I Iterations to ramp boundary conditions for leak outlet used

in the compressor with leakage version; currently not used

in versions 4.4 and later; similar to iramp except that ap-

plied to compressor leakage; [DEFAULT=1].

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 23

iramp0_leak I Used if leak_outlet=.true.; for stability purposes,

leak outlet can be treated initially as a solid wall. The

boundary opens after iramp0_leak iterations; [DE-

FAULT=0]

timestep I Flag specifying time step computation method

= 0 the most accurate version; takes into account both

convective and viscous spectral radii (the viscous

spectral radius does not include turbulence ef-

fects) - currently produces smallest time step be-

cause convective spectral radii are larger than vis-

cous (laminar) spectral radii [DEFAULT=0]

= 1 convective spectral radii are ignored - currently

produces largest time step

= 2 uses a variant definition of convective spectral

radii

= 3 identical to 1

ttime R End run time for unsteady simulations, in seconds [DE-

FAULT=1000.0]

UNS3D User’s Manual Texas A&M

24 Input and Output Files for uns3d

&card2

&card2 – Code Controls

iorder I Spatial accuracy order

= 1 First-order accurate [DEFAULT]

= 2 Second-order accurate

use_limiter L Flag to indicate whether to use the limiter, [DEFAULT=

.TRUE.]

invis L Flow model flag

= .TRUE. Inviscid flow (Euler equations)

= .FALSE. Viscous flow (Reynolds-averaged Navier-

Stokes equations) [DEFAULT]

lamin L Flag that specifies whether the flow is laminar or turbulent

= .TRUE. Laminar flow [DEFAULT]

= .FALSE. Turbulent flow modeled with either the

Spalart-Allmaras or the κ− ω Shear Stress

Transport model

itrans I No longer used

mstg I Number of stages in Runge-Kutta

= from 1 to 5 for first order [DEFAULT=4]

= from 1 to 5 for second order [DEFAULT=3]

irhsm I Number of Jacobi iterations for implicit residual smoothing,

[DEFAULT=0]

lsgg I Gradient computation method

= 0 Green-Gauss [DEFAULT]

= 1 Inverse distance weighted least squares

= 2 Weighted least squares with QR (WLSQR).

Weight specified by wlsqr_pwr

= 3 WENO

= 4 Hybrid Green-Gauss/WLSQR (experimental

stage)

iramp_lim0 I The first iramp lim0 iterations the limiter is set 0; after iter-

ation iramp lim0 the limiter is gradually increased to its full

values (during iramp lim iterations); [DEFAULT=0]

iramp_lim I number of iterations after iramp lim0 iterations during

which the limiter is multiplied by a ramp function that varies

smoothly between 0 and 1; [DEFAULT=1]

steady L Flag for steady flow

= .TRUE. steady flow [DEFAULT]

= .FALSE. unsteady flow

typlim I Limiter type for second-order computations

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 25

= 0 No limiter

= 1 Barth

= 2 Venkatakrishnan [DEFAULT]

= 3 van Albada

= 4 MLP - Venkatakrishnan

= 5 Flux limiting (Roe - Harten flux only)

typlim_opt I Additional options for limiters [DEFAULT=0]

if typlim = 2

= 0 Venka-e1 (original Venkatakrishnan)

= 1 Venka-Wang

= 2 Venka-e2 (Forrest’s modification)

if typlim = 4

= 0 MLP-e1

= 1 MLP-Wang

= 2 MLP-e2

if typlim = 5

= 0 Slope limiter fct. van PHI=1.0

= 1 Slope limiter fct. van Albada

= 2 Slope limiter fct. van Leer

= 3 Slope limiter fct. ospre

= 4 Slope limiter fct. HQUICK

= 5 Slope limiter fct. superbee

= 6 Slope limiter fct. minmod

fluxtype I Flux function selection (highly recommended are options 1

and 3)

= 1 Roe with Harten entropy fix [DEFAULT]

= 2 AUSMPW+

= 3 RoeM (4.9d and later) or Roe-EC(4.9c)

= 4 AUSM+

= 5 Steger-Warming (4.9d and later)

= 6 HLLC (4.9d and later)

venka_c R Coefficient in Venkatakrisnan’s limiter; [DEFAULT=5.0]

hardwall L Flag for hard wall boundary condition;

[DEFAULT=.TRUE.]

preconditioned L Flag for preconditioning; [DEFAULT=.FALSE.]

twod L Flag for 2D or 3D; currently inactive

[DEFAULT=.FALSE.]

wlsqr_pwr R Value of the exponent applied to the WLSQR weighting

function, wi = d−p
i where di is the distance along edge i

= 0.0 Un-weighted

= 1.0 Inverse distance weighted [DEFAULT]

= 2.0 Inverse distance squared weighted

UNS3D User’s Manual Texas A&M

26 Input and Output Files for uns3d

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 27

&card2a

&card2a – Implicit Solver Controls

imp L Flag that specifies whether to use implicit solver or not

= .TRUE. - implicit [DEFAULT]

= .FALSE. - explicit

lag R Amount the implicit terms are lagged, lag ∈ (0,1), [DE-

FAULT=0.5d0]

imp_tol R Implicit sub-iteration tolerance, [DEFAULT=5d-6]

max_imp_sub I Maximum number of implicit sub-iterations, [DE-

FAULT=5]

int_cfl R Initial CFL number for CFL ramping, [DEFAULT=2.0]

cfl_ramp_n I Number of iterations in which the CFL number is ramped

from int_cfl to cfl, [DEFAULT=50]

cfl_back R Percentage the CFL number is lowered at the start of each

real time step in dual time stepping [DEFAULT=0.2]

imp_o_store L Flag for computation/storing of imp_o matrix

=.TRUE. Compute once & store (faster, more memory)

[DEFAULT]

=.FALSE. Compute when needed (slower, less memory)

visc_jac I Flag used for implicit solver, which sets type of viscous flux

Jacobian

= 1 numeric viscous flux Jacobian

= 2 diagonalized viscous flux Jacobian

= 3 direct viscous flux Jacobian [DEFAULT]

= 4 no viscous flux Jacobian

UNS3D User’s Manual Texas A&M

28 Input and Output Files for uns3d

&card3

&card3 – Time Step Definition

cfl R Courant-Friedrichs-Lewy (CFL) number. Maximum CFL

number depends on the order of the scheme and the number

of stages in the Runge-Kutta scheme; [DEFAULT=0.5]

dtimedim R Size of the real time step for dual-time stepping scheme;

[DEFAULT=1.0d-4]

Note: the size of the real time step for the single-time step-

ping scheme is calculated using the CFL number.

epss R implicit residual smoothing factor; [DEFAULT=0.5]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 29

&card4

&card4 – Initial Flow Field Parameters

Some variables that define the initial flow field parameters depend on the value of mapbc.

This approach was taken to ensure backwards compatibility with older input files.

hrough R The equivalent sand grain roughness height in turbulent

wall units; [DEFAULT=5.0] - NO LONGER USED

vel0_scale R Scaling factor that can be used to scale the uniform velocity

field during solution initialization; [DEFAULT=1.0d0]

neqt I Number of equations for the turbulent model. If neqt =

1, the Spalart-Allmaras turbulence model is used. If neqt

= 2, the Shear Stress Transport (SST) turbulence model is

used; [DEFAULT=2]

nustart R Initial value of eddy viscosity-like variable, ν̃. The

eddy viscosity-like variable is needed for the Spalart-

Allmaras turbulence model, that is, when neqt = 1; [DE-

FAULT=3.0d0]

mapbc = .FALSE. specific variables

u0 R Freestream Mach number component in x-direction; [DE-

FAULT=0.0]

v0 R Freestream Mach number component in y-direction; [DE-

FAULT=0.0]

w0 R Freestream Mach number component in z-direction; [DE-

FAULT=0.0]

alfax R Flow angle between x-axis and the projection of the veloc-

ity on the x− z plane, in degrees; [DEFAULT=0.0]

alfaz R flow angle between velocity vector and its projection on the

x− z plane, in degrees; [DEFAULT=0.0]

tintens R Turbulent intensity; [DEFAULT=0.01]

tlength R Turbulent length scale; typically 5% of the channel height

at the inlet in a turbine; could be calculated as ℓ = Cµκ
1.5/ǫ,

where κ is the kinetic energy (per unit mass) of the turbulent

fluctuations, κ = 0.5u′

iu
′

i, ǫ is the dissipation per unit mass,

ǫ = ν
∂u′

i

∂xk

∂u′

i

∂xk
and Cµ=0.09. [DEFAULT=0.01]

mapbc = .TRUE. specific variables

ax(i) R Array equivalent of alfax (see above), where i specifies

the *.mapbc index of the target inlet boundary face

az(i) R Array equivalent of alfaz (see above), where i specifies

the *.mapbc index of the target inlet boundary face

UNS3D User’s Manual Texas A&M

30 Input and Output Files for uns3d

tin(i) R Array equivalent of tintens (see above), where i speci-

fies the *.mapbc index of the target inlet boundary face

tlen(i) R Array equivalent of tlength (see above), where i speci-

fies the *.mapbc index of the target inlet boundary face

x
y

z

V

Vxy

αx

αz

Vx
Vy

Figure 6.1: Inlet velocity and its angles.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 31

&card5

&card5 – Flow Conditions

Some variables used to define the flow conditions depend on the value of mapbc. This

approach was taken to ensure backwards compatibility with older input files.

twall R Wall temperature, in K; [DEFAULT=288.15]

mapbc = .FALSE. specific variables

ptot R Inlet total pressure, in Pa; [DEFAULT=101325.0]

ttot R Inlet total temperature, in K; [DEFAULT=288.15]

pback R Outlet static pressure, in Pa; [DEFAULT=ptot]

pback_ratio R Ratio of outlet static pressure to inlet total pressure. Used in

place of pback if pback_ratio 6= 0; [DEFAULT=0.0d0]

pback_leak_ratR Ratio of leak outlet static pressure to inlet total pressure; [DE-

FAULT=1.0]

mapbc = .TRUE. specific variables

ubc(i,k) R Array equivalent of u0,v0, and w0 where i is the *.mapbc

index of the target inlet boundary, and k corresponds to either 1

(u0), 2 (v0), or 3 (w0) [DEFAULT=0.]

p0_in(i) R Array equivalent of ptot (see above) where i is the *.mapbc

index of the target inlet boundary [DEFAULT = -1.]

t0_in(i) R Array equivalent of ttot (see above) where i is the *.mapbc

index of the target inlet boundary [DEFAULT = -1.]

ps_ex(i) R Array equivalent of pback (see above) where i is the

*.mapbc index of the target outlet boundary [DEFAULT = -

1.]

UNS3D User’s Manual Texas A&M

32 Input and Output Files for uns3d

&card6

&card6 – Reference Conditions

pref R Pressure, in Pa. Can be either p∞ or ptot; [DE-

FAULT=96173.42]

tref R Temperature, in K. Can be either T∞ or ttot; [DE-

FAULT=302.77]

scale R Scale factor for grid units; [DEFAULT=1.0]

pinf R Static pressure corresponding to ptot and inlet Mach num-

ber; if not specified or set to -1, the values is calculated by

the code [DEFAULT=-1.0]

tinf R Static temperature corresponding to ttot and inlet Mach

number; if not specified or set to -1, the values is calculated

by the code [DEFAULT=-1.0]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 33

&card7

&card7 – Gas Properties

fmu0 R Gas dynamic viscosity, in Pa·sec; [DEFAULT=1.716d-5]

vispwr R Power of viscosity variation; [DEFAULT=2/3] - no longer

used

gcp R Specific heat capacity at constant pressure, in J/(kg K); [DE-

FAULT=1004.5]

gamma R Ratio of specific heat capacities; [DEFAULT=1.4]

rgas R Gas constant, in J/(kg K); [DEFAULT=287.16]

prl R Prandtl number; [DEFAULT=0.72]

prt R Turbulent Prandtl number; [DEFAULT=0.9]

UNS3D User’s Manual Texas A&M

34 Input and Output Files for uns3d

&card8

&card8 – Rotating Wheel Speed

omegax R Rotational frequency, n, about the x-axis, in RPM. n is then

used to calculate an angular velocity, ωx divided by a refer-

ence speed, Vref : ωx/Vref = 2πn/(60Vref)
= 0.0 No rotation [DEFAULT]

> 0.0Angular velocity vector points along x-axis
(

~ωx · î > 0
)

< 0.0Angular velocity vector points opposite x-axis
(

~ωx · î < 0
)

omegax2 R Rotational frequency

xrle R Axial location at which hub rotation begins; [DEFAULT=-

1.d32]

xrte R Axial location at which hub rotation ends1; [DE-

FAULT=1.d32]

rte R Maximum radius of the rotating wheel; [DEFAULT=1.d32]

1Rotational boundary conditions are only applied for xrle ≤ x ≤ xrte.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 35

&card9

&card9 – Postprocessing Options

echo L Show and generate extra debugging information;

[DEFAULT=.TRUE.]

debug L Show debug information, e.g. current subroutine lo-

cation; [DEFAULT=.FALSE.]

debug2 L Show additional debug information by providing

residuals after each iteration, as opposed to when the

buffer is full. Note: slows down the code signifi-

cantly; [DEFAULT=.FALSE.]

intev_freq I Integrate and display physical parameters (such as,

forces, etc.) every intev_freq iterations; [DE-

FAULT=100]

intev_freq_pt I Integrate and display physical parameters (such as,

forces, etc.) every intev_freq_pt pseudo-time

iterations; [DEFAULT=10]

res_freq I Frequency of writing residuals; [DEFAULT=1]

res_freq_pt I Frequency of writing residuals in pseudo-time; [DE-

FAULT=10]

itersave I Save solution every itersave iterations; [DE-

FAULT=100]

ires I Chooses which residual to monitor:

= 1 Density

= 2 x-momentum

= 3 y-momentum

= 4 z-momentum

= 5 Energy

q_corrctn_limit R Stop Runge-Kutta iterations if q_correction is

less than q_corrctn_limit. The value of

q_corrctn_limit includes only mass, momen-

tum, and energy. The turbulence model equations, if

used, are not included. [DEFAULT=1.0d-14]

q_corrctn_ratio R Stop Runke-Kutta iterations if residuals drop

by q_corrctn_ratio orders. The value of

q_corrctn_ratio includes only mass, momen-

tum, and energy. The turbulence model equations, if

used, are not included. [DEFAULT=5.0d0]

MonitorMaxMach L Flag to indicate whether to monitor maximum Mach

number; [DEFAULT=.TRUE.]

MaxMachThreshold R Display a warning if Mach number is higher than

MaxMachThreshold; [DEFAULT=2.0d0]

MonitorMaxTemp L Flag to indicate whether to monitor maximum tem-

perature; [DEFAULT=.TRUE.]

UNS3D User’s Manual Texas A&M

36 Input and Output Files for uns3d

MaxTempThreshold R Display a warning if temperature is higher than

MaxTempThreshold; [DEFAULT=1000.0d0]

reset_iter_counter L Reset iteration number to 0 if

reset_iter_counter=.TRUE.;

[DEFAULT=.FALSE.]

iflux_type I No longer used

Force_l L Flag for computing forces on the body;

[DEFAULT=.TRUE.]

force_itype I Flag to determine which surfaces and how they are

grouped when computing body forces

= 0 All wall surfaces are grouped together [DE-

FAULT]

= 1 Surfaces “extracted” using (i,j,k) information

taken from ijkfile. Assumption of turboma-

chinery grids with surfaces defined on j = 1 layer

of the multi-block domain’s O-Grids.

= 2 Surfaces defined by an external surface defini-

tions file, surfint_file.

gradtest L Flag used to test gradients; [DEFAULT=.FALSE.]

mom_o R Point of (x,y,z) coordinates that define the origin

about which moments are computed

flow_type C Flow type flag. Not used in general code

makemovie L Flag that allows to generate movies;

[DEFAULT=.FALSE.]

mov_start_num I Initial movie file id number; [DEFAULT=1]

movie_freq I Frequency of movie output; [DEFAULT=1]

multirow_search_debug L Generate debug files for multi-row mesh

dumplimiter L Flag to generate Tecplot file to visualize the stencil-

based solution limiter values. Use with caution, this

will generate a Tecplot file at every stage of the

Runge-Kutta, for every iteration – VERY SLOW!

[DEFAULT=.FALSE.]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 37

&card10

&card10 – Relaxation Factors

resrlx R Relaxation factors that multiply the variations that update

state variables; vector of dimension 7

UNS3D User’s Manual Texas A&M

38 Input and Output Files for uns3d

&cardprecon

&cardprecon – Preconditioning2

eps_minur R minimum reference velocity; [DEFAULT=0.0 for viscous

flow and 0.1(u02+v02+w02) for inviscid flow]

eps_deltap R pressure velocity coefficient; [DEFAULT=0.001]

eps_vis R viscous velocity coefficient; [DEFAULT=1.0]

2read only if preconditioned=.true. and imp=.false.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 39

&cardforced

&cardforced – Forced Vibration

amp R Amplitude value, nondimensionlized by chord; [DE-

FAULT=0.0d0]

for def_wave=cos, y(t) = amp · [1− cos(t)]/2
for def_wave=sin, y(t) = amp · sin(t)

forced_freq R Forcing frequency, in Hz; [DEFAULT=1.0d0]

def_type C Type of deformation: none, random, piston,

fromfile, pitch, rbf_pitch, rbf_plunge,

rbf_modal_for [DEFAULT=’none’]

def_wave C Type of deformation wave: cos or sin; [DEFAULT=cos]

forced_file C File name if def_type is fromfile;

[DEFAULT=’forced.def’]

ea(1) R x-component of elastic axis location for pitching only

[DEFAULT=0.0d0]

ea(2) R y-component of elastic axis location for pitching only

[DEFAULT=0.0d0]

axisdir I Direction of elastic axis (assumed z) [DEFAULT=3]

pitch_rrat R Ratio of max and min radius for pitching, valid

for def_type pitch, rbf pitch and rbf plunge

[DEFAULT=3.0d0]

cascade L Flag that indicates linear cascade; [DEFAULT=.FALSE.]

stagger_deg R Stagger angle, in degrees - this must be in agreement with

the mesh information; [DEFAULT=0.0d0]

mode_file C Name of the externally supplied file that contains bending/-

torsion mode shapes for use with the rbf_modal_for

deformation type, see Sec. 6.1.6 for a description of the file

nmode_vibe I Specify the number of modes to use. Only valid if

def_type=rbf_modal_for [DEFAULT=1]

modal_freq_for(i) R Specify the deformation frequency, in Hertz, for

each nmode_vibe vibration mode. Only valid if

def_type=rbf_modal_for

modal_amp_for(i) R Specify the deformation amplitude for each

nmode_vibe vibration mode. Only valid if

def_type=rbf_modal_for

mode_select(i) I Select the desired mode from the mode shape definitions

file. Negative values may also be specified to include:

−1 → pitching about ea, −2 → plunging motion in di-

rection of axisdir, and −3 → plunging motion normal

to the stagger angle

ibpa_deg R Specify the inter-blade phase angle, in degrees, for turbo-

machinery forced vibration cases [DEFAULT=0.0]

UNS3D User’s Manual Texas A&M

40 Input and Output Files for uns3d

j0free_frac R Specify fraction of the j-layers on the “tip” layer of a turbo-

machinery blade O-grid that are allowed to slide to permit

three-dimensional deformations of a turbomachine blade

[DEFAULT=0.5]

sparse_rbf L Radial basis function type flag, set to .TRUE. to use

a sparse matrix implementation. Not currently imple-

mented, placeholder only [DEFAULT=.FALSE.]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 41

&cardrom

&cardrom – Reduced-order Model

rom L Run FOM or ROM;

= .TRUE. Run reduced-order model (ROM)

= .FALSE. Run full-order model (FOM) [DEFAULT]

nmodes I Number of POD modes; [DEFAULT=20]

restart_rom L Restart flag; [DEFAULT=.FALSE.]

check_ROM_jacobian L Check Jacobian of ROM; [DEFAULT=.FALSE.]

write_snapshots L Write snapshots flag; [DEFAULT=.FALSE.]

snapshot_freq I Number of iterations between writing snapshots;

[DEFAULT=100]

vary_pback L Specifies whether back pressure oscillates;

[DEFAULT=.FALSE.]

POF R Back pressure frequency×2π; [DEFAULT=100.d0]

POA R Back pressure amplitude; [DEFAULT=0.01d0]

dyn_avg L Specifies whether uses dynamic average or static average;

[DEFAULT=.FALSE.]

dyn_phi L Specifies whether uses dynamic basis function or static ba-

sis functions; [DEFAULT=.FALSE.]

mode_dir C Folder where the modes.dat file is;

[DEFAULT=’modes/’]

time_dir C Folder where the r?txxxx.ascii files are;

[DEFAULT=’time_coe/’]

pback_file C File name for the back pressure vs. time;

[DEFAULT=’pback.dat’]

UNS3D User’s Manual Texas A&M

42 Input and Output Files for uns3d

&vortex

&vortex – Initialize flow vortex3

init_vortex L Flag for seeding a vortex [DEFAULT=.FALSE.]

init_pressure L Flag for re-initializing the pressure field. if .FALSE., the

local pressure field is not modified [DEFAULT=.FALSE.]

v_xc R x-location of vortex [DEFAULT=24.5]

v_yc R y-location of vortex [DEFAULT=0.0]

v_strength R Vortex strength [DEFAULT=1.0]

max_radius R Maximum radius of initial vortex [Default=1025]
vinode I Node number where the vortex’s strength is to be measured

and reported. Note: This feature is not currently paral-

lelized [DEFAULT=1]

3Used for debugging the code

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 43

&patchbox

&patchbox – Patch Initial Flowfield Using Hexagonal Regions

patch_q_box L Flag to patch the initial flowfield using up-to five dif-

ferent hexagonal regions with different flow values [DE-

FAULT=.FALSE.]

nbox I Number of hexagonal patches to include, max of five al-

lowed

dbx_ratio(i) R Density ratio, ρi/ρ∞, used to set the density inside the ith

hexagonal region

pbx_ratio(i) R Pressure ratio, pi/p∞, used to set the pressure inside the ith

hexagonal region

ubx(i) R Normalized u-velocity, similar to u0, inside the ith hexago-

nal region

vbx(i) R Normalized v-velocity, similar to v0, inside the ith hexago-

nal region

wbx(i) R Normalized w-velocity, similar to w0, inside the ith hexag-

onal region

xbx(i,k) R Specifies the upper (k = 1) and lower (k = 2) boundaries

for the ith hexagonal region in the x-direction

ybx(i,k) R Specifies the upper (k = 1) and lower (k = 2) boundaries

for the ith hexagonal region in the y-direction

zbx(i,k) R Specifies the upper (k = 1) and lower (k = 2) boundaries

for the ith hexagonal region in the z-direction

UNS3D User’s Manual Texas A&M

44 Input and Output Files for uns3d

&shocktube

&shocktube – Initialize Flow for Shock Tube Geometries

x_diaphragm R x-coordinate of the diaphragm [DEFAULT=0.5]

qst0_L(i) R Dimensional (SI) state vector of the fluid upstream of the

diaphragm [DEFAULT={1, 0, 0, 0, 105}]

qst0_r(i) R Dimensional (SI) state vector of the fluid downstream of the

diaphragm [DEFAULT={1/8, 0, 0, 0, 104}]

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 45

6.1.2 vol.mesh File

In addition to the main input file, grid information is also needed. This information is provided

through two files: vol.mesh and c2n.def (or vol.mesh xxx and c2n.def xxx for the parallel run,

where xxx is the processor number). A vol.mesh file that was used on a sequential run can be used

by the parallel version of uns3d by first copying vol.mesh into vol.mesh 000 and then appending

the line ’0 1 0’ at the end of vol.mesh 000.

The Fortran commands that read the information from the vol.mesh file are:

open (np, file = gridfile, status = ’old’, form = ’formatted’)

read (np, *) ncell, nnode, nedge, nface, nbface

! read in grid point coordinates

do i = 1, nnode

read (np, *) xnd(i), ynd(i), znd(i)

end do

! bface-point entries and boundary face condition idbcs

do i = 1, nbface

read (np, *) np_bface(i), (ip_bface(i, n), n = 1, np_bface(i)), &

idbcs(i) ! bface condition

end do

! cell-face entries

do i = 1,ncell

read (np, *) nf_cell(i) ! number of faces

read (np, *) (if_cell(i, n), n = 1, nf_cell(i)) ! face number

do n = 1, nf_cell(i)

if (if_cell(i, n) == 0) then

write (*,*) ’zero face number at cell’, i, ’ face’, n

stop ’in readstruc’

end if

end do

end do

! face-edge entries

do i = 1, nface

read (np, *) ne_face(i) ! number of edges

read (np, *) (ie_face(i, n), n = 1, ne_face(i)) ! edge number

end do

!

! edge-point entries

do i = 1, nedge

read (np, *) (ij_edge(i, n), n = 1, 2) ! 2 end points for each edge

end do

UNS3D User’s Manual Texas A&M

46 Input and Output Files for uns3d

6.1.3 c2n.def File

The Fortran commands that read the information from the c2n.def file are:

open (134, file = trim(c2nfile), iostat = istat, status = ’old’)

read (134, *) ntet, npent5, npent6, nhex

icell = 0

! Read in tetrahedral cells

do i = 1, ntet

icell = icell + 1

read (134, *) (c2n(icell,j), j = 1, 4)

end do

! Read in pentahedral cells with 5 nodes

do i = 1, npent5

icell = icell + 1

read (134, *) (c2n(icell,j), j = 1, 5)

end do

! Read in pentahedral cells with 6 nodes

do i = 1, npent6

icell = icell + 1

read (134, *) (c2n(icell,j), j = 1, 6)

end do

! Read in hexahedral cells

do i = 1, nhex

icell = icell + 1

read (134, *) (c2n(icell,j), j = 1, 8)

end do

6.1.4 *.mapbc File

The *.mapbc file contains information on how the surface boundaries of the computational mesh

are grouped together and what boundary condition types are applied to each grouping of boundary

faces. The file contains a header that specifies the total number of boundary groupings. This

information is used to allocate the boundary condition arrays found in the input namelists &card0,

&card4, and &card5. The file is then made up of three columns of information. The first

contains the index of the boundary face grouping, the second contains the boundary condition

type information, and third column contains character strings that can describe each boundary face

grouping. The following Fortran snippet can be used to read such a file:

read(iom,*) itmax

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 47

allocate(itype(itmax))

bc_list: do i = 1,itmax

read(iom,*) j, itype(i), bc_name

end do bc_list

6.1.5 typlim ids.dat File

The typlim ids.dat file specifies the process IDs and type-limiter to be set on that process

along with the needed options to run the specified type-limiter. The first line of the file specifies: (1)

the number of processes for which the type-limiter will be modified, and (2) the number of added

options to be set: 0=only the typlimiter is specified, 1=typlim opt is also specified, 2=typlim opt

and venka c are specified. The subsequent lines specify the process ID, typlim. Optionally, the

lines can also specify typlim opt and venk c, depending on the number of added options, that is,

the value of the second integer specified in the first line of the file. For example, if processes 10

and 268 should use a limiter different from the limiter used for the rest of processes, and if these

two processes should use the Venkatakrishnan limiter (i.e., typlim=2) with Forrest’s modification

(i.e., typlim opt=2), then the typlim ids.dat file should be:

2 1

10 2 2

268 2 2

6.1.6 Modal Definition File

The “Modal Defintion File” characterizes possible bending/torsion structural modes that might be

applied to a given geometry in the form of a forced deformation. These mode shapes must be

computed by external means. The following Fortran code snippet reads the mode shape file:

read(iof,*) nmax_s, nmax_m

do j = 1,nmax_m

read(iof,*) marker, n, natf_glob(j), maxd_glob(j)

do i = 1,nmax_s

read(iof,*) glob(i), mdx_g(i,j), mdy_g(i,j), mdz_g(i,j)

end do

end do

where:

nmax_s Number of global surface points used to describe each mode shape

nmax_m Number of mode shapes contained within the file

marker Dummy Character, must equal M

n Dummy index, not used for anything in Version 5.4

natf_glob Natural frequency of the mode shape

UNS3D User’s Manual Texas A&M

48 Input and Output Files for uns3d

maxd_glob Maximum mode shape deformation amplitude, used to normalize the

current mode shape deformation components

glob Global node number of a surface node

mdx_g Mode shape deformation x-component (∆x) associated with the

global node

mdy_g Mode shape deformation y-component (∆y) associated with the

global node

mdz_g Mode shape deformation z-component (∆z) associated with the

global node

6.1.7 LinearCascadeFV.def File

For the blade forced vibration simulation, the file LinearCascadeFV.def is needed. The

Fortran commands that read the information from this file are:

read(io,’(A,A,A)’) ’"’,trim(title),’"’

read(io,*) type, gap

read(io,*) npass, sigma_deg

read(io,*) npoints_proc(p), npfore(p), npaft(p), kmax

do n = 1,npoints_proc(p)

read(io,*) blade_points_proc(n,p), blade_num_proc(n,p), &

offset_surf(n,p)

end do

do n = 1,npfore(p) ! H-grids only

read(io,*) im_fore_proc(n,p), k_fore(n,p), gamma_fore(n,p)

end do

do n = 1,npaft(p) ! H-grids only

read(io,*) im_aft_proc(n,p), k_aft(n,p), gamma_aft(n,p)

end do

do n = 1,kmax ! H-grids only

read(io,*) IIN(n,p), ILE(n,p), ITE(n,p), IEX(n,p)

end do

The definitions of the variables used in the LinearCascadeFV.def file are:

title C Case title, for file description

type C Defines the grid type. Letter case independent

= H or h→ H-type grid

= C or c→ C-type grid

gap R Linear distance in the y-direction between a master and its

slave node for linear cascade geometries.

npass I Number of passages, also the number of blades

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.1 uns3d Input File 49

sigma_deg R inter-blade phase angle in degrees

npoints_proc I Total number of blade surface nodes located found on the

local processor mesh.

npfore I Total number of master periodic nodes upstream of the lead-

ing edge found on the current processor mesh. (>0 for H-

grids; =0 for C-grids)

npaft I Total number of master periodic nodes downstream of the

trailing edge found on the current processor mesh. (>0 for

H-grids; =0 for C-grids)

kmax I Total number of spanwise layers

blade_points_proc I Blade surface node numbers for the current processor mesh.

blade_num_proc I Blade number for given surface node.

= 0, 1, 2, ..., npass
offset_surf L .TRUE. for surface points that are offset from the other

half of the airfoil surface (see Fig. 6.2). .FALSE. for all

other points.

im_fore_proc I Master periodic boundary node numbers upstream of the

leading edge for the current processor mesh.

k_fore I Master periodic boundary node k-indices (upstream nodes)

gamma_fore R Ratio of arc lengths needed to linearly interpolate the new

y and z coordinates of the deformed master periodic bound-

ary. Computed using the undeformed mesh. (upstream

nodes)

= (si − siIN) / (siLE
− siIN), where s is an

arc length and si is the arc length to any

point along the edge.

im_aft_proc I Master periodic boundary node numbers downstream of the

trailing edge for the current processor mesh.

k_aft I Master periodic boundary node k-indices (downstream

nodes)

gamma_aft R Ratio of arc lengths needed to linearly interpolate the new

y and z coordinates of the deformed master periodic bound-

ary. Computed using the undeformed mesh. (downstream

nodes)

= (si − siTE
) / (siEX

− siTE
)

IIN I Inlet i-index on the master periodic boundary for a given k-

layer.

ILE I Leading edge i-index on the master periodic boundary for a

given k-layer.

ITE I Trailing edge i-index on the master periodic boundary for a

given k-layer.

IEX I Outlet i-index on the master periodic boundary for a given

k-layer.

UNS3D User’s Manual Texas A&M

50 Input and Output Files for uns3d

Figure 6.2: Typical H-type linear cascade geometry.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.2 uns3d Output Files 51

6.1.8 SurfaceSetInt.def File

An optional file SurfaceSetInt.def can be used to identify specific surfaces on which to

compute surface forces. If this file is not present, the surface forces will be calculated on all wall

boundaries.

The SurfaceSetInt.def file is created during the mesh generation process. The Fortran

commands in splitmesh which read the parallelized definition files (needed by uns3d) are:

read(io,*) nsurf

read(io,*) nface_proc(myid)

do n = 1,nface_proc(myid)

read(io,*) nsurf_proc(n,myid), iface_proc(n,myid)

end do

The definitions of the variables used in the SurfaceSetInt.def file are:

nsurf I Total number of surfaces being defined.

nface_proc I Total number of mesh faces in the parallel definition files.

nsurf_proc I Surface number of the current mesh face. (nsurf proc ≤
nsurf)

iface_proc I Local mesh face number.

6.2 uns3d Output Files

• monitorerr1.dat - monitorerr5.dat (UNIT=71-75)

= log10 [max_over_nnode (abs (q(n+1) - q(n))], where q(n) is the state

vector of primitive variables at iteration n

for steady flows the file content is:

iter, err?

for unsteady flows the file content is:

time, err?

• monitoravg1.dat - monitoravg5.dat (UNIT=81-85)

average residual

• monitoriofl.dat

mass flow rate error between inlet and outlet

• monitormach.dat

maximum Mach number

UNS3D User’s Manual Texas A&M

52 Input and Output Files for uns3d

• monitormax1.dat - monitormax5.dat (in write_residual)

maximum residual of density, u, v, w, and pressure

for steady flows the file content is:

iter, rms?

for unsteady flows the file content is:

time, rms?

• monitorforx.dat, monitorfory.dat, and monitorforz.dat

These three files return the time variation of the forces components.

• estimated_run_time.dat

File that gives the estimated run time in seconds, minutes or hours. For unsteady, dual-time

stepping simulations, the estimated run time assumes the worst case, that is, all subiterations

are needed for each time step.

• summarize.dat

File that saves inlet and outlet mass flow rates, their ratio, ratio of outlet to inlet stagnation

pressures, ratio of outlet to inlet static pressures, ratio of outlet to inlet densities, total-to-total

and total-to-static efficiencies with a frequency specified by intev_freq.

• Forces-Moments.dat

File that saves forces and moments, if force_l=.true.

• txt/*.txt_xxx
4

Description of the input data and history of the run. The name of the file txt/*.txt_xxx

is specified by variable rsdfile of &cardf in the main input file.

• out/*.dat_xxx

File that contains the state variables rho, u, v, w, p and a2 at the end of the run. The name of

the file out/*.dat_xxx is specified by variable fileoutq of &cardh in the main input

file.

• out/*.tur_xxx

File that contains the state variables of the turbulence model at the end of the run. The name

of the file out/*.tur_xxx is specified by variable fileoutqt of &cardi in the main

input file.

• out/wdist.dat_xxx

Files that save the distances from nodes to walls. These distances are calculated only once,

unless the mesh is deforming. The names of these files are hardwired.

• plt/*.plt_xxx

Files that save the flow data, if dump_tecplot=.true., in Tecplot format.

4xxx is the processor number

UNS3D User’s Manual Release 6.2.2: February 17, 2024

6.2 uns3d Output Files 53

• plt/boundary_face_values.tec_xxx

Files that save the IDs of the boundary faces, if bcplot=.true., in Tecplot format. If

these files are already present, they are not overwritten unless debug=.true. The names

of these files are hardwired.

• plt/*.yplus.plt_xxx

Files that save the values of the y+ number (along the walls), if dump_yplus=.true.

and invis=.false., in Tecplot format. The name of the file plt/*.yplus_xxx is

specified by variable tecplot name of &cardf in the main input file.

UNS3D User’s Manual Texas A&M

54 Input and Output Files for uns3d

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Chapter 7

uns3d Graphical User Interface

7.1 Introduction

The purpose of this chapter is to discuss the graphical user interface (GUI) that is provided in the

uns3d software package. TclTk, the language the GUI is written in, is discussed first. Next,

instructions are given on how to install the GUI and the additional required software. The last

section includes an overview of the GUI and instructions on how to use it.

7.2 TclTk

This section describes the language that the GUI was written in. The GUI is written in TclTk. Tcl

is a scripting language developed in the 1980’s by John Ousterhout [15, xlix] and Tk is a toolkit for

graphical user interfaces [15, li]. Tcl is a simple interpretive language that is platform-independent,

making scripts written in the language highly-portable. Tcl is embeddable and extensible in ap-

plications because its interpreter is a library of C functions [9, xxxi]. This flexibility makes Tcl a

perfect platform for GUI development.

GUI development in Tcl is facilitated by Tk. Tk was also developed by Ousterhout, and like

Tcl, is a library of C functions [9, xxxi]. Tk allows the coder to create Tcl scripts to generate the

graphical objects instead of writing more difficult C functions [9, xxxi]. Tk is also widely used by

other languages, such as Python, to handle GUI generation.

The benefit of using TclTk as the basis for the GUI is multifaceted. TclTk is a powerful

language that can easily be learned in a day. As the core language is written in C, many of the

details other languages would require the coder to know and handle, such as C++ or Java as well

as C, are hidden and handled by the core language [9, xxxi]. If a required functionality does

not exist within the core language, the coder only needs to write an additional script to create

it. Additionally, since TclTk is an interpreted language, development, debugging, and testing on

the fly is extremely easy without the need to recompile or relaunch the application. TclTk is

cross platform, so a TclTk application originally written for Linux is typically portable to Mac

or Windows without any modifications. Also, TclTk is a glue language, allowing the coder to

piece together several applications written in any number of languages into one larger code within

a single framework, making cross application communication possible. Finally, TclTk, and most

UNS3D User’s Manual Texas A&M

56 uns3d Graphical User Interface

of the available extensions to the language, are freely available under a BSD license. All these

reasons make TclTk the great language to generate the GUI in.

7.3 Installation

This section provides step-by-step instructions for obtaining and installing TclTk and the GUI. As

mentioned in the previous section, TclTk is freely available under a BSD license. To obtain TclTk,

download the latest maintained package (version 8.5) from Active State (www.activestate.com) for

your platform. This is required to install the basic core packages.

Installation of the core packages is done by double clicking the executable or disk image. At

the end of the basic installation, the install path for TclTk will need to be written down and added

to the $PATH system variable of the machine. For the Bash shell on Unix/Linux operating system,

this can be added to either the .bashrc or .bash profile file as follows:

PATH=$PATH:/opt/ActiveTcl-8.5/bin/

export PATH .

To install all of the additional required packages, the following command using teacup, TclTk’s

package handler, needs to be run from a terminal:

sudo teacup install --force --with-recommends

ActiveState::ActiveTcl85 .

Additionally, Expect needs to be installed, which handles subprogram communication and exe-

cution. Expect can be installed as follows:

sudo teacup install - -force - -with-recommends Expect .

To view the residual output from the GUI, the plotting program xmgrace will need to be

installed. xmgrace is available in the package grace, which is freely available. For Linux users,

grace is installed as follows:

sudo apt-get install grace

For Mac users, grace can be installed from Fink:

sudo fink install grace .

After installing TclTk, the .tgz file containing the GUI source files should be untarred using the

following command:

tar -xvf uns3d_gui.tgz .

The installation requires that the location of the uns3d executable be specified in the file ’exe-

cutable location.txt’. The file ’executable location.txt’ is located in the GUI source directory. The

location of the uns3d executable must be specified using the absolute path, as follows:

$UNS3DHOME/uns3d .

This completes installation of the GUI onto the computer. The next section will discuss how to use

the GUI.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

7.4 Using the GUI 57

7.4 Using the GUI

This section describes how to use the GUI to create and run simulations. To run the GUI from the

command line, type the following command in a terminal:

./uns3d_gui.tcl

This launches the GUI, presenting a splash screen with the uns3d logo. This screen is shown in

Figure 7.1. Next, the user is allowed to create or load an existing project. This is discussed in the

following subsection.

Figure 7.1: Splash screen for GUI.

7.4.1 Creating or Loading a Project

After the splash screen vanishes, the user is presented with the “File Manager” window, shown in

Figure 7.2. The “File Manager” window allows the user to either create or load an existing project

by clicking either the Create or Load button, respectively.

Figure 7.2: “File manager” screen for GUI.

Creating a Project

Clicking the Create button brings the user to the project creation dialog box, shown in Figure 7.3,

where the user names the project. After choosing an appropriate name and clicking save, a .proj

UNS3D User’s Manual Texas A&M

58 uns3d Graphical User Interface

file, which stores the information about all of the runs for this project and sets variables for the

GUI, is created along with a folder that stores the input files and all of the files created by uns3d.

The user is then presented with another dialog box where the name is given for the first input file

that the user would like to run, which looks similar to the project creation dialog box. Clicking save

then writes the newly created project to the list of available projects in the ’project locations.txt’

file. This information is used when loading an existing project. Once this step is completed, the

user is brought to the main GUI screen.

Figure 7.3: “Create a New Project” screen for GUI.

Loading a Project

Clicking the Load button brings the user to the project load dialog box, shown in Figure 7.4. The

user is then presented with a list of available projects from which they can choose from. Each

project also lists the currently available input files for the project, from which the user can choose

to load a particular input file. Clicking the project name will by default load the last input file in

the list. Once this step is completed, the user is brought to the main GUI screen.

Figure 7.4: “Load an Existing Project” screen for GUI.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

7.4 Using the GUI 59

7.4.2 The Main Window

After the user has either created or loaded a project, they are presented with the main screen of

the GUI, shown in Figure 7.5. From this screen, the user can generate an input file for uns3d,

select another project, create multi-run jobs, execute and run uns3d, and view the residual history

real-time. These options are explained in the following subsections.

(1)

(2)

(3)
(4) (5)(6)

(7)

(8)

(9) (10) (11)

(12)

(13)

Figure 7.5: The main screen of the GUI.

Creating Input

From the main screen, the user can create input for a current production run, edit an existing input

file, or create a new input file from the current input file. The input is broken up into different tabs

that best describe what the input is (item 1 on Figure 7.5). These tabs are as follows:

• Input/Output (I/O)

• Boundary Conditions (BC)

• Initial Conditions (IC)

• Run Control

• Implicit

• Solver

• Rotational Frame

• Flow Model

• Reference/Constants

• Other Parameters

UNS3D User’s Manual Texas A&M

60 uns3d Graphical User Interface

• POD/ROM

• Overview

• Run

An explanation of each of the variables in the tabs can be found in Chapter 6. Each tab is split

into basic and advanced sections. Basic input variables are the variables most often modified.

Advanced variables, which can be viewed/edited by clicking either the Advanced button (item 2

on Figure 7.5) on each tab or clicking the Advanced User button on the main screen (item 3 on

Figure 7.5), are those variables that are less often modified. Once the user is satisfied with the

input, the project and input file can be saved by clicking either the Save, Save As, or Run button

(items 4, 5, and 6 respectively on Figure 7.5).

When editing variables in the tabs, the user can hover over the variable name or entry and see

information about the variable at the bottom of the screen in the message box, shown in Figure 7.5

(item 7). This dialog box presents the user with information about the variable, as well as its

default value.

Adjacent to each variable are check boxes (item 8 on Figure 7.5). The check boxes are used

to populate the Overview tab. The Overview tab allows the user to quickly check and review

important input in one place. The user can modify the input from this tab as well. When the

project is saved, those variables visible in the Overview tab are saved such that the user can view

these variables each time the GUI is opened. The overview tab is shown in Figure 7.6.

Figure 7.6: An example overview tab for the GUI.

Clicking the Add Next Run (item 9 on Figure 7.5) button will allow the user to generate a

subsequent input file for a restarted or continued case. The user is presented with a dialog box

where he can name the next input file. After choosing the name, the GUI will automatically

increment file names (e.g., from 1 to 2). The GUI will also change the input variable that specifies

the type of run from new to restart. Clicking the Add New Run button (item 10 on Figure 7.5) will

generate a completely new file using the code defaults. The user also has the option of loading an

existing input file from other cases to populate the input by clicking the Load button (item 11 on

Figure 7.5).

UNS3D User’s Manual Release 6.2.2: February 17, 2024

7.4 Using the GUI 61

Of special note is the ’Generate Flow Conditions’ button on the IC tab, shown in Figure 7.7.

Clicking this button pops up a separate window. This window allows the user to set the run con-

ditions for the current input file following the isentropic relations. Three options are given for

generating initial conditions:

• Ambient Pressure, Ambient Temperature, Velocity

• Dynamic Pressure, Ambient Temperature, Velocity

• Altitude and Velocity

Choosing any of these options, the user inputs the relevant data and select units and then clicks the

Generate button for the chosen option. This action computes the total and reference values for the

input and then updates the relevant variables in the GUI.

Figure 7.7: “Generate Flow Conditions” utility for the GUI.

Selecting Another Project

The user is allowed to select another project from the project tree view on the main screen, shown

in Figure 7.8 (item 12 on Figure 7.5). The project tree view, just like the load screen, displays

all existing projects and the associated input files. From the tree view, the user can select another

input file from the list or another project. The user is also allowed to delete or rename inputs or

projects from this tree view.

UNS3D User’s Manual Texas A&M

62 uns3d Graphical User Interface

Figure 7.8: The project tree view for the GUI on the main screen.

Create Multi-Run Jobs

The user can create multi-run jobs using the multiple run tree view, shown in Figure 7.9 (item 13

on Figure 7.5). Multi-run jobs are simulations with several input files run sequentially. To create

a multi-run job, the user right clicks input files in the project tree view and selects ’Add to Run

List’. In this tree view, the user can delete input files from the list. Once the user is satisfied with

the list of the input files, the Multiple Runs button is clicked. This generates a script file with the

executable and the input files such that the system can handle them all at once. Once the run script

is created, the run tab is opened. This is discussed in the next section.

Figure 7.9: The multiple run tree view for the GUI on the main screen.

Running the Code

After the user is satisfied with the input for uns3d, running the code with the GUI is straight

forward. By clicking either the Run or Multiple Runs button, the user sets in motion a series of

events. The GUI will save the current state of the GUI into the project file, and the current input

file is also saved. The GUI then checks the input file and generates folders for uns3d if the user

has requested certain output from the code to be placed in them, such as the flow field results and

the restart files. Once these folders have been created, the GUI then creates the Run tab. On the run

tab, shown in Figure 7.10, a text box is created for output from uns3d. The GUI reads a log file

generated from the code and displays the information in the text box for the user to read. If at any

time the user is not satisfied with the progress of the run, the user can kill uns3d by pressing the

UNS3D User’s Manual Release 6.2.2: February 17, 2024

7.4 Using the GUI 63

End Run button, which kills the process and returns the user to the main screen. On the Run tab,

the user can also graph the residual histories computed from uns3d. Clicking the Graph button

will allow the user to plot the residuals in xmgrace. Once the run is ended, the run buttons are

reactivated, and the user can proceed to either generating new input data for the next run or close

and exit the GUI.

Figure 7.10: The run tab with code output from the GUI.

UNS3D User’s Manual Texas A&M

64 uns3d Graphical User Interface

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Appendix A

Boundary Condition Descriptions

A.1 Symmetry Boundary Conditions

This section describes the various implementations of the symmetry boundary condition within

POD-UNS3D. Figure A.1 shows an illustration of single symmetry boundary face, “face n”. In the

figure:

• The closed circles represent the nodes of the mesh

• ~qi is the state vector at node i

• The dashed lines are the boundaries of the k sub-domains of the boundary face

• The open squares are the boundary face quadrature points located in each sub-domain of the

face

• n̂n,k is the boundary face normal of the kth sub-domain

Please use this figure for reference throughout this section.

A.1.1 isymbc = 0: “Pseudo-Ghost Cell” Implementation

The “pseudo-ghost cell” implementation seeks to mimic a true ghost-cell implementation of a

symmetric boundary. The boundary state vector is defined using the values stored at the adjacent

node without any form of interpolation. The boundary state vector for the Navier–Stokes equations

is given by

~qbn,k
=

ρi
~vi − 2 (n̂n,k · ~vi) n̂n,k

pi

(A.1)

where the resultant boundary face velocity vector is a mirrored copy of the nodal velocity vector.

No interpolation was used to define ~qb so that the values are equal to or directly mirror the values

used on the other side of the flux function when computing the convective fluxes. The boundary

state vector for the turbulence model is defined to be identical to the adjacent nodal values: ~qtbn,k
=

~qti.

UNS3D User’s Manual Texas A&M

66 Boundary Condition Descriptions

nn,k

q
i

Face n

qbn,k

Figure A.1: Illustration of a symmetry boundary face, “face n”.

This particular implementation of the symmetric wall boundary condition requires a modifica-

tion of the gradient vectors of each state variable. The normal component of the gradient vector is

manually zeroed after the calculation of the gradients is completed:

~∇φ
∣

∣

∣

b
= ~∇φ

∣

∣

∣

b
−
(

~∇φ
∣

∣

∣

b
· n̂b

)

n̂b

where φ can be any scalar variable and n̂b is the boundary face normal (n̂b = ı̂, n̂b = ̂, or n̂b = k̂).

The gradient vector modification is only completed if isymbc = 0.

A.1.2 isymbc = 1: “Inviscid Wall” Implementation

This symmetry boundary condition implementation treats the boundary as if it were an inviscid

wall, and seeks to satisfy only the no-penatration condition. Nodal values of the state vector are

interpolated to the quadrature points of a given face using the subroutine linearint2d. The

boundary state vector, defined using interpolated values, is given by

~qbn,k
=

ρ′n,k
~v′n,k −

(

n̂n,k · ~v′n,k
)

n̂n,k

p′n,k

(A.2)

where the interpolated values are indicated with a prime. No interpolation is used for the turbulent

boundary state vector, i.e., ~qtbn,k
= ~qti.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

A.2 Farfield Boundary Conditions 67

A.2 Farfield Boundary Conditions

This section presents, in detail, the different options for describing a farfield boundary currently im-

plemented in POD-UNS3D. Table A.1 lists the available options. The default option in POD-UNS3D

is the slip wall condition, ifarbc = 0. Refer to Section A.1.2 for a description of the slip wall im-

plementation, and to Section A.2.1 for a description of the extrapolation condition. The Riemann

invariant implementation is now described.

Table A.1: Farfield boundary implementation options.

Farfield Flag
Implementation Type

(ifarbc)

0 Slip wall condition

1 Extrapolation condition

2 Riemann Invariant

A.2.1 ifarbc = 1: Extrapolation

The extrapolation boundary condtion as implemented in POD-UNS3D uses interpolated values of

the state vector at the face quadrature points to define the boundary state vector. The boundary

state vector is then given by

~qb =

ρf
~Vf

pf

, (A.3)

where the subscript f refers to an interpolated value. The current interpolation scheme used in

POD-UNS3D results in a linear interpolation of the variables across a given face.

A.2.2 ifarbc = 2: Riemann Invariant

The Riemann invariant boundary condition uses the incoming and outgoing characteristcs to deter-

mine the local Mach number normal to the boundary. The local normal Mach number is then used

to determine the character of the flow and whether the flow is entering or leaving the domain.

To determine the Riemann invariants, an inner and outer state must first be defined. The outer

state is defined to be the freestream conditions: ~q∞ = {ρ∞, ~V∞, p∞}T . On a given boundary face,

the inner state is taken directly from the boundary node nearest the quadrature point, resulting in

the inner state vector ~qi = {ρi, ~Vi, pi}T . The outgoing and incoming Riemann invariants are then

defined, respectively, as

R+ =

{

~Vi · n̂ + 2ci
γ−1

, if
∣

∣

∣

~Vi · n̂
∣

∣

∣
< c∞

~V∞ · n̂+ 2c∞
γ−1

, if ~Vi · n̂ ≤ −c∞

R− =

{

~V∞ · n̂− 2c∞
γ−1

, if
∣

∣

∣

~Vi · n̂
∣

∣

∣
< c∞

~Vi − 2ci
γ−1

, if ~Vi · n̂ ≥ c∞

(A.4)

UNS3D User’s Manual Texas A&M

68 Boundary Condition Descriptions

where n̂ is the outward facing bounadry normal, and the values of the inner and outer sound speed

were computed by ci =
√

γpi/ρi and c∞ =
√

γp∞/ρ∞, respectively. The form of the Riemann

invariant equations in Eqn A.4 is dependent on the magnitude and direcetion of the velocity. There

can be no outgoing Riemann invariant if supersonic inflow (~Vi · n̂ ≤ −c∞) is found, necessitating

a special definition for the outgoing invariant. Likewise, there can be no incoming invariant if

supersonic outflow (~Vi · n̂ ≥ c∞) is detected, resulting in the modified form.

The computed incoming and outgoing invariants are then used to compute both the speed of

sound at the boundary,

cb =
γ − 1

4

(

R+ −R−
)

,

and the magnitude of the velocity normal to the boundary,

V⊥ =
1

2

(

R+ +R−
)

.

The sign of the boundary normal velocity magnitude will dictate whether the flow is entering or

leaving the domain. A positive value of V⊥ indicates that the flow is exiting the domain. Based on

the direction of the flow, the components of the velocity at the boundary and the entropy can then

be calculated using

~Vb =

~Vi +
(

V⊥ − ~Vi · n̂
)

n̂, if V⊥ > 0

~V∞ +
(

V⊥ − ~V∞ · n̂
)

n̂, if V⊥ ≤ 0
(A.5)

sb =

c2i
γργ−1

i

, if V⊥ > 0
c2
∞

γργ−1

∞

, if V⊥ ≤ 0
(A.6)

The bounadry state vector is then defined as ~qb = {ρb, ~Vb, pb}T , where the density is given by

ρb =

(

c2b
γsb

)1/(γ−1)

,

and the pressure is given by

pb =
ρbc

2
b

γ
.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Appendix B

Grid Generation Utilities

Grid generation is an important step in the process of numerically simulating the flow. Therefore,

a poor-quality grid will certainly delay the convergence and reduce the accuracy of the solution.

Several mesh formats are used in grid generation for CFD, such as: CGNS, FUN3D, OpenFOAM,

SU2 or UGRID. The UGRID is a NASA format for meshes that is being used by several CFD

solvers and grid generation software, e.g., Pointwise.

This chapter explains how to convert a mesh file in UGRID format into a format usable by

uns3d . The first section will give an overview of prep code which converts a mesh in the

UGRID format to the two files that needed for the uns3d program. The second section will

explain the use of splitmesh code, the domain decomposition program for parallel processing.

For meshes that exceed tens of millions of grid nodes, it is profitable to split the UGRID before

generating the uns3d grid files. This approach will be described in the third section of this chapter.

B.1 Grid Preprocessing (prep)

prep , the preprocessing program for uns3d , converts a mesh in UGRID format into a mesh file

for use by the sequential version of uns3d . In conjunction with splitmesh , it can be used to

create a mesh for the parallel version of uns3d .

B.1.1 Installation

It is convenient to define first the folder where software is being installed. For the C-shell add the

following line to the .cshrc file:

setenv GGENHOME /wherever_you_want_it_to_be

For the Bourne, Bash or Korn shell, add the following line to the .bashrc file:

export GGENHOME=/wherever_you_want_it_to_be

To install the preprocessor, follow these steps:

UNS3D User’s Manual Texas A&M

70 Grid Generation Utilities

1. Copy the distribution file uns3dprep.tgz from where you downloaded to $GGENHOME

and untar it:

cp uns3dpod.tgz $GGENHOME

cd $GGENHOME

tar xvfz uns3dprep.tgz

2. Edit the makefile to match the FORTRAN compiler that you have available and then make

the makefile to generate the executable prep:

make

3. For convenience, you might want to add the executableprep to a folder that is in the$PATH,

for example /usr/local/bin. To do this, copy the executable prep:

sudo cp prep /usr/local/bin

The sudo command requires the superuser password for your computer.

B.1.2 Usage

Once the executable is installed, prep needs two things to generate a sequential mesh:

1. UGRID style mesh

2. parameter.nml

The boundary conditions used for the UGRID mesh are as follows:

Table B.1: List of boundary conditions.

0 Periodic slave

1 Inlet

2 Outlet

3 Wall

4 Rotating wall

7 Symmetry

9 Farfield

100 Periodic master

The file parameter.nml has the following format:

&global

echo = .true. ! echo output from prep at run time

dvol = .false. ! not used in prep, used in parallel_vol

spring = .false. ! not used in prep

UNS3D User’s Manual Release 6.2.2: February 17, 2024

B.2 Domain Decomposition (splitmesh) 71

edgegen = .false. ! not used in prep, used in parallel_vol

dump_prep = .true. ! output a Tecplot file of the processed

! .ugrid file

dump_debug = .false. ! output connectivity information for

! debugging purposes

/

&filename

filemesh = "vol.mesh" ! Name for .mesh file

fileplt = "prep.plt" ! Name for Tecplot file if dump_prep is true

fileugrid = "vol.ugrid" ! Name used for input .ugrid file

/

&preplist

pointwise = .true. ! Flag for using pointwise .ugrid

! files, which use positive boundary

! condition flags

ptol1 = 1d-5 ! Tolerance for translational

! and rotational periodicity

! (x position)

ptol2 = 1d-5 ! Tolerance for rotational periodicity,

! radial position

radial = .false. ! Flag for radial periodicity

angle = 45.0d0 ! Angle between master/slave faces,

! given in degrees

dx = 0.0d0 ! x-coordinate difference between

! master/slave face, translational

! periodicity

dy = 0.0d0 ! y-coordinate difference between

! master/slave face, translational

! periodicity

dz = 0.0d0 ! z-coordinate difference between

! master/slave face, translational

! periodicity

/

Running prep with this input will read the file vol.ugrid and output a file vol.mesh.

The mesh can be viewed in Tecplot with the output prep.plt.

Note that using the boundary conditions in this guide requires that pointwise be set to

.true..

To run prep, simply run the executable while in the folder that contains the parameter.nml

file.

B.2 Domain Decomposition (splitmesh)

The domain decomposition program splitmesh must be used if the parallel uns3d executable

is used. splitmesh is intended to convert a sequential mesh into several parallel meshes. The

mesh is split into regions with user-defined criteria. These regions are then made into individual

meshes for the processors. Several changes are made to the format of the split mesh, even if the

case is to be run with only a single processor.

UNS3D User’s Manual Texas A&M

72 Grid Generation Utilities

B.2.1 Installation

Installation proceeds much as it does for uns3d and prep.

It is convenient to define first the folder where software is being installed. For the C-shell add

the following line to the .cshrc file:

setenv GGENHOME /wherever_you_want_it_to_be

For the Bourne, Bash or Korn shell, add the following line to the .bashrc file:

export GGENHOME=/wherever_you_want_it_to_be

To install the preprocessor, follow these steps:

1. Copy the distribution file splitmesh.tgz from where you downloaded to $GGENHOME

and untar it:

cp splitmesh.tgz $GGENHOME

cd $GGENHOME

tar xvfz splitmesh.tgz

2. Edit the makefile to match the FORTRAN compiler that you have available and then make

the makefile to generate the executable splitmesh:

make

3. For convenience, you might want to add the executable splitmesh to a folder that is in

the $PATH, for example /usr/local/bin. To do this, copy the executable prep:

sudo cp prep /usr/local/bin

The sudo command requires the superuser password for your computer.

B.2.2 Input and Output Files

Input

vol.mesh - Sequential mesh file for uns3d . Sequential mesh file in vol.mesh format (converted

from UGRID by prep)

c2n.def - Sequential cell-to-node connectivity file for uns3d . Sequential cell-to-node connec-

tivity file (converted from UGRID by prep)

LinearCascadeFV.def <optional> - Additional data file for forced vibration of linear cas-

cades. It will only be split if present.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

B.2 Domain Decomposition (splitmesh) 73

SurfaceSetInt.def <optional> - Pointer file that contains boundary information for various

surfaces. It will only be split if present.

Output

vol.mesh ??? : uns3d parallel mesh files. Each file contains a portion of the grid after domain

decomposition

c2n.def ??? : uns3d parallel cell-to-node connectivity file. Each file contains a portion of

the grid after domain decomposition

loc2glob ??? : Local node to global node pointer list. Its format is described on page 76

*.plt : Meshes in Tecplot format for viewing

LinearCascadeFV.def ??? : <optional> - It will only be split if present.

SurfaceSetInt.def ??? : <optional> - It will only be split if present.

B.2.3 Usage

Once the executable is installed, splitmesh needs only the sequential output from prep, typi-

cally named vol.mesh and c2n.def.
If splitmesh is executed without arguments, the following error message will be shown:

| The correct usage of this executable is as follows: |

| splitmesh [meshfile] [c2nfile] [-nx #] [-ny #] [-nz #] |

| [-nr #] [-nz #] [-na #] [-nb #] [-nc #] |

| |

| -nx # -- specifies the number of splits in the x direction |

| -ny # -- specifies the number of splits in the y direction |

| -nz # -- specifies the number of splits in the z direction |

| |

| -nr # -- specifies the number of splits along the radius |

| -nt # -- specifies the number of splits along theta |

| |

| -na # -- number of splits (user defined 1 in usr_def_srt) |

| -nb # -- number of splits (user defined 2 in usr_def_srt) |

| -nc # -- number of splits (user defined 3 in usr_def_srt) |

| |

| If no flags are specified, three values are read directly. |

| This assumes a Cartesian coordinate system, in x, y, z |

| order. |

An example of correct usage would be the following:

splitmesh vol.mesh c2n.def -nx 2

UNS3D User’s Manual Texas A&M

74 Grid Generation Utilities

This would split the mesh files vol.mesh and c2n.def into two parallel meshes, split with

a plane of constant x with an equal number of nodes on either side (to the nearest integer).

Here is another example, which highlights the usage of multiple splits:

splitmesh vol.mesh c2n.def -nr 2 -nx 4

This would split the sequential mesh into eight parallel sections. This is done in two steps.

First, the sequential mesh is split based on the radius from x-axis (the x-axis is the axis of rotation

for rotational cases). Then, both of those meshes are split an additional 4 times by planes of

constant x. Note that the planes may be different for each of the two meshes.

B.2.4 usr def srt Subroutine

The subroutineusr def srt is intended to be modified by the users who are not fully satisfied by

the splitting options available. With it, any split can be obtained that is based on the node number

or on the geometric location of the nodes. An ideal split is one that has the least number of nodes

shared by multiple processors. This subroutine allows the user to modify the sorting algorithm to

allow splits in different ways. Nodal positions and indices are provided within the subroutine.

The subroutine is given below:

subroutine usr_def_srt(xout, which, x, y, z, nnode)

implicit none

integer, intent(in) :: nnode

character, intent(in) :: which

real(8), intent(in) :: x(nnode)

real(8), intent(in) :: y(nnode)

real(8), intent(in) :: z(nnode)

real(8), intent(out) :: xout(nnode)

integer :: i

real(8) :: tmp

! --

select case (which)

case (’a’)

xout = x

case (’b’)

do i = 1, nnode

tmp = z(i) - 0.5d0 * x(i)

xout(i) = tmp*tmp - y(i)*y(i)

end do

case (’c’)

xout = z

UNS3D User’s Manual Release 6.2.2: February 17, 2024

B.3 File Format 75

end select

end subroutine usr_def_srt

Each case corresponds to one of the three flags -na, -nb, or -nc.

As before, the ordering of these flags determines the order used to split the mesh.

The additional sorting options can be accessed using -na, -nb, and -nc.

NOTE: If the grid is single-block structured, splitmesh will automatically assume splitting

is desired along i, j, and k. Splitting based on node position will not be possible. In almost all

cases, this will lead to optimal splits.

B.2.5 Compatibility

Not all of the options are compatible with one another. There are three possible sets of coordinates:

Cartesian : This uses only the flags -nx, -ny, and -nz.

Cylindrical : This uses only the flags -nx, -nr, and -nt.

User-defined : This uses only the flags -na, -nb, and -nc.

If desired, coordinates can be combined based on the user defined functionality.

B.3 File Format

B.3.1 UGRID Format

The UGRID format is given below.

Header

nnode, nbtrias, nbquads, nctets, ncpent5, ncpent6, nchexs

For each node:

xnd(i), ynd(i), znd(i)

For each triangular boundary face:

n_face(i, 1) n_face(i, 2) n_face(i, 3)

For each quadrilateral boundary face:

n_face(i, 1) n_face(i, 2) n_face(i, 3) n_face(i, 4)

For each triangular boundary face:

bcond(i)

UNS3D User’s Manual Texas A&M

76 Grid Generation Utilities

For each quadrilateral boundary face:

bcond(i)

For each tetrahedral cell:

n_cell(i, 1) n_cell(i, 2) n_cell(i, 3) n_cell(i, 4)

For each pyramidal pentahedral cell:

n_cell(i, 1) n_cell(i, 2) n_cell(i, 3) n_cell(i, 4) n_cell(i, 5)

For each prismatic pentahedral cell:

n_cell(i, 1) n_cell(i, 2) n_cell(i, 3) n_cell(i, 4) n_cell(i, 5) n_cell(i, 6)

For each hexahedral cell:

n_cell(i, 1) n_cell(i, 2) n_cell(i, 3) n_cell(i, 4)

n_cell(i, 5) n_cell(i, 6) n_cell(i, 7) n_cell(i, 8)

The definitions of the variables used in UGRID file are:

nnode I Number of nodes

nbtrias I Number of triangular boundary faces

nbquads I Number of quadrilateral boundary faces

nctets I Number of tetrahedral cells

ncpent5 I Number of pyramidal pentahedral cells

ncpent6 I Number of prismatic pentahedral cells

nchexs I Number of hexahedral cells

xnd(i) I x-location of node i
ynd(i) I y-location of node i
znd(i) I z-location of node i
n_face(i, n) I nth node of face i
bcond(i) I boundary condition for boundary face i
n_cell(i, n) I nth node of cell i

B.3.2 loc2glob.dat Format

Header:

nread nnode nnode proc max nproc

UNS3D User’s Manual Release 6.2.2: February 17, 2024

B.4 splitout and combineout 77

Data:

nloc ncpu nglob (<nread> lines)

The definitions of the variables used in loc2glob.dat file are:

nread I number of lines in file (sum of nodes in each parallel mesh)

nnode I number of nodes in sequential mesh

nnode_proc_max I maximum number of nodes on any one processor

nproc I number of parallel meshes

nloc I local node number (1–no more than nnode proc max)

ncpu I domain identity (0–nproc-1)

nglob I global node number (1–nnode)

B.4 splitout and combineout

The uns3d code writes its outputs based off of processor number when run in parallel. Sometimes

the user may wish to combine these files into one. Or, the user may wish to split a single file into

multiple files based off of processor number. For these cases, the split out and combineout

codes can be used.

Both codes are contained in the split out directory. The codes are compiled using gfortran.

If another compiler is desired, the user will need to modify the makefile within the directory. To

compile the codes type

make

in the directory. The makefile is designed to compile both codes.

B.4.1 splitout

The splitout code takes a single file and splits it to be read by multiple processors based off

of a loc2glob file. When executing the splitout code without any command line input

arguments, the splitout code will output the following:

--

| The correct usage of this executable is as follows: |

| splitout <filename> <filetype> <l2gfile>, |

| |

| <filename> -- File to be split |

| <filetype> -- Can be "out", "def", "tur", or "#", |

| where "#" refers to the number of values/node |

| <l2gfile> -- Output file from splitmesh |

--

UNS3D User’s Manual Texas A&M

78 Grid Generation Utilities

This lets the user know how to run the code. There are three inputs: filename, filetype, and

l2gfile.

filename - The name of the file to be split (without the . extension)

filetype - The type of file: ”out”, ”def”, ”tur”, or ”#”, where ”#” refers to the number of

values/node. This code does not work on snapshot files. The filetype refers to

the . extension of the filename.

l2gfile - The loc2glob file read in by the uns3d code.

B.4.2 combineout

The combineout code takes multiple files split by processor number and combines them into a

single file using a provided loc2glob file. When executing the combineout code without any

command line input arguments, the combineout code will output the following:

--

| The correct usage of this executable is as follows: |

| combineout <filename> <filetype> <l2gfile> [<c2nfile>],|

| |

| <filetype> -- Can be "out", "def", "tur", "plt", |

| "snaps", or "#", where "#" refers to the |

| number of values/node |

| <filename> -- Base name of files to be combined |

| <l2gfile> -- Output file from splitmesh |

| <c2nfile> -- Name of c2n connectivity (plt only) |

| <niter> -- Number of iterations (snaps only) |

--

This lets the user know how to run the code. There are three to five inputs depending on the

filetype: filename, filetype, l2gfile, c2nfile, and niter.

filename - The name of the file to be split (without the . extension)

filetype - The type of file: ”out”, ”def”, ”tur”, ”plt”, ”snaps”, or ”#”, where ”#” refers to

the number of values/node. For all except ”snaps”, the filetype refers to the .

extension of the filename. The ”snaps” input is for combining snapshot files.

l2gfile - The loc2glob file read in by the uns3d code.

c2nfile - The connectivity file c2n.dex read in by the uns3d code.

niter - The number of snapshots.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

Bibliography

[1] S. R. Allmaras, F. T. Johnson, and P. R. Spalart. Modifications and clarifications for the im-

plementation of the Spalart-Allmaras turbulence model. In Seventh International Conference

on Computational Fluid Dynamics, number ICCFD7-1902, Big Island, HI, July 2012.

[2] M. F. Barone and J. L. Payne. Methods for simulation-based analysis of fluid–structure

interaction. Technical Report SAND2005-6573, Sandia National Laboratories, Albuquerque,

NM, October 2005.

[3] P. G. A. Cizmas, J. I. Gargoloff, T. W. Strganac, and P. S. Beran. A parallel multigrid al-

gorithm for aeroelasticity simulations. Journal of Aircraft, 47(1):53–63, January–February

2010.

[4] A. de Boer, M. van der Schoot, and H. Bijl. Mesh deformation based on radial basis function

interpolation. Computers & Structures, 85(11–14):784–795, June–July 2007.

[5] J. Gressier and J.-M. Moschetta. On the pathological behavior of upwind schemes. 36th

AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 98-0110, Reno, NV, January

1998.

[6] A. Harten. Self adjusting grid methods for one dimensional hyperbolic conservation laws.

Journal of Computational Physics, 50:235–269, 1983.

[7] S. Kim, C. Kim, O. Rho, and S. Hong. Cure for shock instability: Development of an

improved roe scheme. 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper

2002-0548, Reno, NV, January 2002.

[8] F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications.

AIAA Journal, 32(8):1598–1605, August 1994.

[9] J. Ousterhout and K. Jones. Tcl and the Tk Toolkit. Pearson Education, 2009.

[10] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal

of Computational Physics, 43:357–372, 1981.

[11] P. Roe. Characteristic Based Schemes for the Euler Equations. Annual Review of Fluid

Mechanics, 18:337–365, 1986.

[12] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic flows.

In 30th Aerospace Sciences Meeting & Exhibit, AIAA-92-0439, Reno, NV, January 1992.

UNS3D User’s Manual Texas A&M

80 BIBLIOGRAPHY

[13] J. Trépanier, M. Reggio, H. Zhang, and R. Camarero. A finite-volume method for the Eu-

ler equations on arbitrary Lagrangian–Eulerian grids. Computers & Fluids, 20(4):399–409,

1991.

[14] M. Vinokur. An analysis of finite-difference and finite-volume formulations of conservation

laws. Journal of Computational Physics, 81(1):1–52, March 1989.

[15] B. Welch, K. Jones, and J. Hobbs. Practical Programming in Tcl and Tk. Practical Program-

ming in Tcl/Tk. Prentice Hall PTR, 2003.

[16] K. Xu. Does perfect Riemann solver exist? 14th AIAA Computational Fluid Dynamics

Conference, AIAA Paper 99-3344, Norfolk, VA, June 1999.

UNS3D User’s Manual Release 6.2.2: February 17, 2024

	Introduction
	The uns3d code
	bfg
	What is new in version 6.0

	Flow Model
	Physical Model
	Dimensionless Variables

	Full-Order Model

	Numerical Method
	Spatial Discretization
	Integral Formulation
	Fluxes Computation
	Gradient Computation

	Temporal Discretization

	Software Installation
	Preliminary Setup
	uns3d Installation

	Starting, Executing, and Stopping uns3d
	Running uns3d
	Typical Simulation

	Stopping uns3d

	Input and Output Files for uns3d
	uns3d Input File
	Main input file
	&cardf
	&cardg
	&cardh
	&cardi
	&cardk
	&card0
	&card1
	&card2
	&card2a
	&card3
	&card4
	&card5
	&card6
	&card7
	&card8
	&card9
	&card10
	&cardprecon
	&cardforced
	&cardrom
	&vortex
	&patchbox
	&shocktube

	vol.mesh File
	c2n.def File
	*.mapbc File
	typlim_ids.dat File
	Modal Definition File
	LinearCascadeFV.def File
	SurfaceSetInt.def File

	uns3d Output Files

	uns3d Graphical User Interface
	Introduction
	TclTk
	Installation
	Using the GUI
	Creating or Loading a Project
	Creating a Project
	Loading a Project

	The Main Window
	Creating Input
	Selecting Another Project
	Create Multi-Run Jobs
	Running the Code

	Boundary Condition Descriptions
	Symmetry Boundary Conditions
	isymbc = 0: ``Pseudo-Ghost Cell'' Implementation
	isymbc = 1: ``Inviscid Wall'' Implementation

	Farfield Boundary Conditions
	ifarbc = 1: Extrapolation
	ifarbc = 2: Riemann Invariant

	Grid Generation Utilities
	Grid Preprocessing (prep)
	Installation
	Usage

	Domain Decomposition (splitmesh)
	Installation
	Input and Output Files
	Usage
	usr_def_srt Subroutine
	Compatibility

	File Format
	UGRID Format
	loc2glob.dat Format

	splitout and combineout
	splitout
	combineout

